Mid-quarter feedback Thank you, 41% of you!

What is working

Lectures

Homeworks, quizzes (surprisingly!)

What should be improved (ordered list)

Do not have all office hours in the mornings

Ambiguous project goals

• More project help

Less strict grading rubric for projects

Recording quality is uneven, whiteboard on Zoom

More practice problems

Message Authentication

Goal and Threat Model

Goal: Enable Bob to verify that the message is from Alice and is unchanged \leftarrow

• This is called integrity/authenticity

Threat: Trudy, an active adversary, will tamper with messages

Wait a Minute!

- We're already encrypting messages to provide confidentiality
- Why isn't this enough?

Encryption Issues

- What will happen if Trudy flips some of Alice's message bits?
 - Bob will decrypt it, and ...

Encryption Issues (2)

- What will happen if Trudy flips some of Alice's message bits?
 - Bob will receive an altered message

Encryption Issues (3)

- Typically encrypt blocks of data
- What if Trudy reorders message?
 - Bob will decrypt, and ...

Encryption Issues (4)

- What if Trudy reorders message?
 - Bob will receive altered message

MAC (Message Authentication Code)

- MAC is a small token to validate the integrity/authenticity of a message
 - Send the MAC along with message
 - Validate MAC, process the message
 - Example: HMAC scheme

MAC (2)

- Sorta symmetric encryption operation key shared
 - Lets Bob validate unaltered message came from Alice
 - Does NOT let Bob convince Charlie that Alice sent it

Digital Signature

Validates the integrity/authenticity of message

- Send it along with the message
- Lets all parties validate
- Example: RSA signatures

Digital Signature (2)

- Kind of public key operation pub/priv key parts
 - Alice signs w/ private key, K_{A-1}, Bob verifies w/ public key, K_A
 - Does let Bob convince Charlie that Alice sent the message

Speeding up Signatures

- Same tension as for confidentiality:
 - Public key has keying advantages
 - But it has slow performance!
- Use a technique to speed it up
 - <u>Message digest</u> stands for message
 - Sign the digest instead of full message

Message Digest or Cryptographic Hash

- Digest/Hash is a secure checksum
 - Deterministically mangles bits to pseudo-random output (like CRC)
 - Can't find messages with same hash
 - Acts as a fixed-length descriptor of message very useful!

Speeding up Signatures (2)

- Conceptually similar except sign the hash of message
 - Hash is fast to compute, so it speeds up overall operation
 - Hash stands for msg as can't find another w/ same hash

Preventing Replays

- We normally want more than confidentiality, integrity, and authenticity for secure messages!
 - Want to be sure message is fresh
- Need to distinguish message from <u>replays</u>
 - Repeat of older message
 - Acting on it again may cause trouble

Preventing Replays (2)

- Replay attack:
 - Trudy records Alice's messages to Bob
 - Trudy later replays them (unread) to Bob
 - She pretends to be Alice

Preventing Replays (3)

- To prevent replays, include a proof of freshness in the messages
 - Use a timestamp, or <u>nonce</u> (number once used)

Using Timestamps

Takeaway

- Cryptographic designs can give us integrity, authenticity and freshness as well as confidentiality.
- Real protocol designs combine the properties in different ways
 - We'll see some examples
 - Note many pitfalls in how to combine, as well as in the primitives themselves

Web Security

What should be the Threat Model for the Web?

Goal and Threat Model

- Much can go wrong on the web!
 - Clients encounter malicious content
 - Web servers are target of break-ins
 - Fake content/servers trick users
 - Data sent over network is stolen ...

Goal and Threat Model (2)

- Goal of HTTPS is to secure HTTP
- We focus on network threats:
 - 1. Eavesdropping client/server traffic
 - 2. Tampering with client/server traffic
 - 3. Impersonating web servers

HTTPS Context

• HTTPS (HTTP Secure) is an add-on

- Means HTTP over SSL/TLS
- SSL (Secure Sockets Layer) precedes TLS (Transport Layer Security)

HTTPS Context (2)

- SSL came out of Netscape
 - SSL2 (flawed) made public in '95
 - SSL3 fixed flaws in '96
- TLS is the open standard
 - TLS 1.0 in '99, 1.1 in '06, 1.2 in '08
- Motivated by secure web commerce
 - Slow adoption, now widespread use
 - Can be used by any app, not just HTTP

SSL/TLS Operation

- Protocol provides:
 - 1. Verification of identity of server (and optionally client)
 - 2. Message exchange between the two with confidentiality, integrity, authenticity and freshness
- Consists of authentication phase (that sets up encryption) followed by data transfer phase

SSL/TLS Authentication

- Must allow clients to securely connect to servers not used before
 - Client must authenticate server
 - Server typically doesn't identify client
- Uses public key authentication
 - But how does client get server's key?
 - With <u>certificates</u> »

Certificates

- A certificate binds pubkey to identity, e.g., domain
 - Distributes public keys when signed by a party you trust
 - Commonly in a format called X.509

PKI (Public Key Infrastructure)

Adds hierarchy to certificates to let parties issue
Issuing parties are called CAs (Certificate Authorities)

PKI (2)

- Need public key of PKI root and trust in servers on path to verify a public key of website ABC
 - Browser has Root's public key
 - {RA1's key is X} signed Root
 - {CA1's key is Y} signed RA1
 - {ABC's key is Z} signed CA1

PKI (3)

- Browser/OS has public keys of the trusted roots of PKI
 - >100 root certificates!
 - Inspect your web browser

Certificate for wikipedia.org issued by DigiCert

This certificate has been verified for the following uses:	
SSL Server Certificate	
Issued To	
Common Name (CN)	*.wikipedia.org
Organization (O)	Wikimedia Foundation, Inc.
-	<not certificate="" of="" part=""></not>
Serial Number	05:DF:E8:FF:15:B8:63:CC:C6:89:C7:8E:64:0C:FE:8B
Issued By	
Common Name (CN)	DigiCert High Assurance CA-3
Organization (O)	DigiCert Inc
Organizational Unit (OU)	www.digicert.com
Validity	
Issued On	12/08/2011
Expires On	12/12/2012
Fingerprints	
SHA1 Fingerprint	03:47:7F:F5:F6:3B:F5:B6:10:C0:7D:65:9A:7B:A9:12:D3:20:83:68
MD5 Fingerprint	C0:C8:F7:A0:33:20:A2:D4:2E:27:65:73:42:4C:A0:24

PKI (4)

- Real-world complication:
 - Public keys may be compromised
 - Certificates must then be revoked
- PKI includes a CRL (Certificate Revocation List)
 - Browsers use to weed out bad keys

TLS handshake

Q: What can attacker (in the network) still learn from an HTTPS connection?

A: Metadata

Takeaways

- SSL/TLS is a secure transport
 - For HTTPS and more, with the usual confidentiality, integrity / authenticity
 - Very widely used today
- Client authenticates web server
 - Done with a PKI and certificates
 - Major area of complexity and risk
- "Metadata" leaks
 - Use other tools (Tor or VPN) if you want to hide that