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Link-State Routing

•Second broad class of routing algorithms
•More computation than DV but better dynamics 

•Widely used in practice
• Used in Internet/ARPANET from 1979
•Modern networks use OSPF (L3) and IS-IS (L2)
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Link-State Setting

Same distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes/links may fail, messages may be lost
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Link-State Algorithm

Proceeds in two phases:
1. Nodes flood topology with link state packets
• Each node learns full topology

2. Each node computes its own forwarding table
• By running Dijkstra (or equivalent)

CSE 461 University of Washington 4



Part 1: Flooding



Flooding

•Rule used at each node:
• Sends an incoming message on to all other neighbors
• Remember the message so that it is only flood once 
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Flooding (2)

•Consider a flood from A; first reaches B via AB, E via 
AE
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Flooding (3)

•Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, 
EF
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Flooding (4)

•C floods CD, CH; D floods DC; F floods FG; G floods 
GF
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Flooding (5)

•H has no-one to flood … and we’re done
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Flooding Details

•Remember message (to stop flood) using source 
and sequence number
• So next message (with higher sequence) will go through

•To make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed
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Problem?



Flooding Problem

•F receives the same message multiple times
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Part 2: Dijkstra’s Algorithm
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Edsger W. Dijkstra (1930-2002)

•Famous computer scientist
• Programming languages
• Distributed algorithms
• Program verification

•Dijkstra’s algorithm, 1969
• Single-source shortest paths, given 

network with non-negative link costs
By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons



Dijkstra’s Algorithm

Algorithm:
•Mark all nodes tentative, set distances from source to 0 

(zero) for source, and ∞ (infinity) for all other nodes
•While tentative nodes remain:
• Extract N, a node with lowest distance
• Add link to N to the shortest path tree
• Relax the distances of neighbors of N by lowering any better 

distance estimates
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Dijkstra’s Algorithm (2)

• Initialization
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Dijkstra’s Algorithm (3)

• Relax around A
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Dijkstra’s Algorithm (4)

• Relax around B
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Dijkstra’s Algorithm (5)

• Relax around C
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Dijkstra’s Algorithm (6)

• Relax around G (say)
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Dijkstra’s Algorithm (7)

• Relax around F (say)
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Dijkstra’s Algorithm (8)

• Relax around E
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Dijkstra’s Algorithm (9)

• Relax around D
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Dijkstra’s Algorithm (10)

• Finally, H … done
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Dijkstra Comments

• Finds shortest paths in order of increasing distance 
from source
• Leverages optimality property

• Runtime depends on cost of extracting min-cost node
• Superlinear in network size (grows fast) 
• Using Fibonacci Heaps the complexity is O(|E|+|V|log| V|)

•Gives complete source/sink tree
• More than needed for forwarding!
• But requires complete topology 
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Bringing it all together…
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Phase 1: Topology Dissemination
•Each node floods link state packet 

(LSP) that describes their portion  of 
the topology
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Phase 2: Route Computation

•Each node has full topology
• By combining all LSPs

•Each node simply runs Dijkstra
• Replicated computation, but finds required routes directly
• Compile forwarding table from sink/source tree
• That’s it folks!
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Forwarding Table
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Handling Changes

•On change, flood updated LSPs, re-compute routes
• E.g., nodes adjacent to failed link or node initiate
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Handling Changes (2)

• Link failure
• Both nodes notice, send updated LSPs
• Link is removed from topology

•Node failure
• All neighbors notice a link has failed
• Failed node can’t update its own LSP
• But it is OK: all links to node removed
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Handling Changes (3)

•Addition of a link or node
• Add LSP of new node to topology
• Old LSPs are updated with new link

•Additions are the easy case …
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Link-State Complications

• Things that can go wrong:
• Seq. number reaches max, or is corrupted
• Node crashes and loses seq. number
• Network partitions then heals

• Strategy:
• Include age on LSPs and forget old information that is not 

refreshed
•Much of the complexity is due to handling corner cases
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DV/LS Comparison
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Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute



IS-IS and OSPF Protocols

•Widely used in large enterprise and ISP networks
• IS-IS = Intermediate System to Intermediate System
• OSPF = Open Shortest Path First

• Link-state protocol with many added features
• E.g., “Areas” for scalability
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