Network Layer (IP)

CSE 461

Ratul Mahajan
Recall the protocol stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Programs that use network service</td>
</tr>
<tr>
<td>Transport</td>
<td>Provides end-to-end data delivery</td>
</tr>
<tr>
<td>Network</td>
<td>Send packets over multiple networks</td>
</tr>
<tr>
<td>Link</td>
<td>Send frames over one or more links</td>
</tr>
<tr>
<td>Physical</td>
<td>Send bits using signals</td>
</tr>
</tbody>
</table>
Network Layer

Goal: Get packets from source to destination, which may be separated by many hops
Why do we need a Network layer?

• Cannot afford to directly connect everyone
 • Cost and link layer diversity
Why do we need a Network layer? (2)

• Cannot broadcast all packets at global scale
Why do we need a Network layer? (3)

• Internetworking
 • Need to connect different link layer networks
• Addressing
 • Need a globally unique way to “address” hosts
• Routing and forwarding
 • Need to find and traverse paths between hosts
Routing versus Forwarding

- **Routing:** deciding the direction to send traffic
- **Forwarding:** sending a packet on its way
Network Service Models
Network service models

• What kind of service does the Network layer provide to the Transport layer?
 • How is it implemented at routers?
Two Network Service Models

• Datagrams, or connectionless service
 • Like postal letters
 • (IP as an example)

• Virtual circuits, or connection-oriented service
 • Like a telephone call
Datagram Model

- Packets contain a destination address; each router uses it to forward packets, maybe on different paths.
Datagram Model (2)

• Each router has a forwarding table keyed by address
 • Gives next hop for each destination address; may change

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

A’s table (initially) A’s table (later) C’s Table E’s Table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

CSE 461 University of Washington
IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet

<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Differentiated Services</th>
<th>Total length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to live</td>
<td>Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (0 or more words)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload (e.g., TCP segment)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virtual Circuit Model

• Three phases:
 1. Connection establishment, circuit is set up
 • Path is chosen, circuit information stored in routers
 2. Data transfer, circuit is used
 • Packets are forwarded along the path
 3. Connection teardown, circuit is deleted
 • Circuit information is removed from routers

• Just like a telephone circuit, but virtual in that no bandwidth need be reserved; statistical sharing of links
Virtual Circuits

- Packets contain a short label to identify the circuit
- Labels don’t have global meaning, only unique for a link
Virtual Circuits (2)

- Each router has a forwarding table keyed by circuit
- Gives output line and next label to place on packet
MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undo at egress
Datagrams vs Virtual Circuits

- Complementary strengths

<table>
<thead>
<tr>
<th>Issue</th>
<th>Datagrams</th>
<th>Virtual Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup phase</td>
<td>Not needed</td>
<td>Required</td>
</tr>
<tr>
<td>Router state</td>
<td>Per destination</td>
<td>Per connection</td>
</tr>
<tr>
<td>Addresses</td>
<td>Packet carries full address</td>
<td>Packet carries short label</td>
</tr>
<tr>
<td>Forwarding</td>
<td>Per packet</td>
<td>Per circuit</td>
</tr>
<tr>
<td>Failures</td>
<td>Easier to mask</td>
<td>Difficult to mask</td>
</tr>
<tr>
<td>Quality of service</td>
<td>Difficult to add</td>
<td>Easier to add</td>
</tr>
</tbody>
</table>
Internetworking (IP)
• How do we connect different networks together?
 • This is called **internetworking**
 • We’ll look at how IP does it

Hi there! Hi yourself
How Networks May Differ

• Lot of ways:
 • Service model (datagrams, VCs)
 • Addressing (what kind)
 • QOS (priorities, no priorities)
 • Packet sizes
 • Security (whether encrypted)

• Internetworking hides the differences with a common protocol. (Uh oh.)
Connecting Datagram and VC networks

• An example to show that it’s not so easy
 • Need to map destination address to a VC and vice-versa
 • A bit of a “road bump”, e.g., might have to set up a VC
Internetworking – Cerf and Kahn

• Pioneers: Cerf and Kahn
 • “Fathers of the Internet”
 • In 1974, later led to TCP/IP
• Tackled the problems of interconnecting networks
 • Instead of mandating a single technology
Internet Reference Model

• Internet Protocol (IP) is the “narrow waist”
 • Supports many different links below and apps above
IP as a Lowest Common Denominator

• Suppose only some networks support QOS or security etc.
 • Difficult for internetwork to support

• Pushes IP to be a “lowest common denominator”
 • Asks little of lower-layer networks
 • Gives little as a higher layer service
IPv4 (Internet Protocol)

- Various fields to meet straightforward needs
 - Version, Header (IHL), Total length, Protocol, and Header Checksum

<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Differentiated Services</th>
<th>Total length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identification</td>
</tr>
<tr>
<td>Time to live</td>
<td>Protocol</td>
<td></td>
<td>Header checksum</td>
</tr>
</tbody>
</table>

- Source address
- Destination address
- Options (0 or more words)

Payload (e.g., TCP segment)
IPv4 (2)

- Some fields to handle packet size differences (later)
 - Identification, Fragment offset, Fragment control bits
IPv4 (3)

- Other fields to meet other needs (later, later)
 - Differentiated Services, Time to live (TTL)

Later, with QOS

Later, with ICMP
IPv4 (4)

- Network layer of the Internet, uses datagrams
- Provides a layer of addressing above link addresses (next)
Recap of network layer

Needed to deliver packets to their destination

Solves three problems

• Internetworking
• Addressing
• Routing and forwarding
IP Addresses

• IPv4 uses 32-bit addresses
 • Later we’ll see IPv6, which uses 128-bit addresses
• Written in “dotted quad” notation
 • Four 8-bit numbers separated by dots

\[
\begin{array}{cccc}
\text{8 bits} & \text{8 bits} & \text{8 bits} & \text{8 bits} \\
\text{aaaaaaaabbbbbbbbcccccccccddddd} & \leftrightarrow & \text{A.B.C.D} \\
\text{00010010000111110000000000000001} & \leftrightarrow & \text{??}
\end{array}
\]
IP Prefixes

- Addresses are allocated in blocks called **prefixes**
 - Addresses in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary
IP Prefixes (2)

• Written in “IP address/length” notation
 • Address is lowest address in the prefix, length is prefix bits
 • E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 • So a /24 ("slash 24") is 256 addresses and /32 is 1 address
IP Forwarding

• Nodes use a table that lists the next hop for prefixes
• Lookup the destination address’s prefix in the table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.24.0.0/19</td>
<td>D</td>
</tr>
<tr>
<td>192.24.12.0/22</td>
<td>B</td>
</tr>
</tbody>
</table>
Host/Router Distinction

• In the Internet:
 • Routers do the routing, know way to all destinations
 • Hosts send remote traffic (out of prefix) to nearest router
Host Networking

• Consists of 4 pieces of data:
 • IP Address
 • Subnet Mask
 • Defines local addresses
 • Gateway
 • Who (local) to send non-local packets to for routing
 • DNS Server (Later)
Host Forwarding Table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>My network prefix</td>
<td>Send on local link</td>
</tr>
<tr>
<td>Default (0.0.0.0/0)</td>
<td>Send to my router</td>
</tr>
</tbody>
</table>

```
[Ratul@MacBook-Pro:19wi ratul$ netstat -r -f inet | grep 192
default 192.168.88.1 UGSc 85 30 en0
192.168.88 link#10 UCS 0 0 en0 !
192.168.88.1/32 link#10 UCS 2 0 en0 !
192.168.88.14/32 link#10 UCS 0 0 en0 !
```
Issues?

• Where does this break down?

Bootstrapping (DHCP)
Finding Link nodes (ARP)
Dynamic Host Configuration Protocol (DHCP)
Bootstrapping

- Problem:
 - A node wakes up for the first time ...
 - What is its IP address? What’s the IP address of its router?
 - At least Ethernet address is on NIC

What’s my IP?
Bootstrapping (2)

1. Manual configuration (old days)
 • Can’t be factory set, depends on use

2. DHCP: Automatically configure addresses
DHCP: Dynamic Host Configuration Protocol

• Invented around 1993, widely used now
• It leases IP address to nodes
• Provides other parameters too
 • Network prefix
 • Address of local router
 • DNS server, time server, etc.
DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td></td>
</tr>
<tr>
<td>UDP</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
</tr>
</tbody>
</table>
DHCP Addressing

• Bootstrap issue:
 • How does node send a message to DHCP server before it is configured?

• Answer:
 • Node sends broadcast messages that delivered to all nodes on the link-level network
 • Broadcast address is all 1s
 • IP (32 bit): 255.255.255.255
 • Ethernet (48 bit): ff:ff:ff:ff:ff:ff
DHCP Messages

Client

- DISCOVER
- OFFER
- REQUEST
- ACK

Server

- All Broadcast (255.255.255.255)
DHCP Messages (2)

• To renew an existing lease, an abbreviated sequence is used:
 • REQUEST, followed by ACK
Address Resolution Protocol (ARP)
Sending an IP Packet

• Problem:
 • A node needs Link layer addresses to send a frame over the local link
 • How does it get the destination link address from a destination IP address?
ARP (Address Resolution Protocol)

• Node uses to map a local IP address to its Link layer addresses
ARP Protocol Stack

• ARP sits right on top of link layer
 • No servers, just asks node with target IP to identify itself
 • Uses broadcast to reach all nodes

<table>
<thead>
<tr>
<th>ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
</tr>
</tbody>
</table>
ARP Messages

[root@host ~]# tcpdump -lni any arp &
(sleep 1; arp -d 10.0.0.254; ping -c1 -n 10.0.0.254)

listening on any, link-type LINUX_SLL (Linux cooked), capture size 96 bytes

17:58:02.155495 arp who-has 10.2.1.224 tell 10.2.1.253
17:58:02.317444 arp who-has 10.0.0.96 tell 10.0.0.253
17:58:02.370446 arp who-has 10.3.1.12 tell 10.3.1.61
ARP Table

```bash
[Ratuls-MacBook-Pro:19wi ratul$ arp -a | grep 192
 ? (192.168.88.1) at e4:8d:8c:54:0:52 on en0 ifscope [ethernet]
```
Discovery Protocols

• There are more of them!
 • Help nodes find each other and services
 • E.g., Zeroconf, Bonjour

• Often involve broadcast
 • Since nodes aren’t introduced
 • Very handy glue