Network Layer (IP)

CSE 461

Ratul Mahajan

Recall the protocol stack

Application

Transport

Network

Link

Physical

- Programs that use network service
- Provides end-to-end data delivery
- Send packets over multiple networks
- Send frames over one or more links
- Send bits using signals

Network Layer

Goal: Get packets from source to destination, which may be separated by many hops

Application
Transport
Network
Link
Physical

Why do we need a Network layer?

- Cannot afford to directly connect everyone
 - Cost and link layer diversity

Why do we need a Network layer? (2)

Cannot broadcast all packets at global scale

Why do we need a Network layer? (3)

- Internetworking
 - Need to connect different link layer networks
- Addressing
 - Need a globally unique way to "address" hosts
- Routing and forwarding
 - Need to find and traverse paths between hosts

Routing versus Forwarding

 Routing: deciding the direction to send traffic Forwarding: sending a packet on its way

Network Service Models

Network service models

- What kind of service does the Network layer provide to the Transport layer?
 - How is it implemented at routers?

Two Network Service Models

- Datagrams, or connectionless service
 - Like postal letters
 - (IP as an example)

- Virtual circuits, or connection-oriented service
 - Like a telephone call

Datagram Model

 Packets contain a destination address; each router uses it to forward packets, maybe on different paths

Datagram Model (2)

- Each router has a forwarding table keyed by address
 - Gives next hop for each destination address; may change

IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet

Virtual Circuit Model

- Three phases:
 - 1. Connection establishment, circuit is set up
 - Path is chosen, circuit information stored in routers
 - 2. Data transfer, circuit is used
 - Packets are forwarded along the path
 - 3. Connection teardown, circuit is deleted
 - Circuit information is removed from routers
- Just like a telephone circuit, but virtual in that no bandwidth need be reserved; statistical sharing of links

Virtual Circuits

- Packets contain a short label to identify the circuit
 - Labels don't have global meaning, only unique for a link

Virtual Circuits (2)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undo at egress

Datagrams vs Virtual Circuits

Complementary strengths

Issue	Datagrams	Virtual Circuits
Setup phase	Not needed	Required
Router state	Per destination	Per connection
Addresses	Packet carries full address	Packet carries short label
Forwarding	Per packet	Per circuit
Failures	Easier to mask	Difficult to mask
Quality of service	Difficult to add	Easier to add

Internetworking (IP)

Topic

- How do we connect different networks together?
 - This is called <u>internetworking</u>
 - We'll look at how IP does it

How Networks May Differ

- Lot of ways:
 - Service model (datagrams, VCs)
 - Addressing (what kind)
 - QOS (priorities, no priorities)
 - Packet sizes
 - Security (whether encrypted)
- Internetworking hides the differences with a common protocol. (Uh oh.)

Connecting Datagram and VC networks

- An example to show that it's not so easy
 - Need to map destination address to a VC and vice-versa
 - A bit of a "road bump", e.g., might have to set up a VC

Internetworking – Cerf and Kahn

- Pioneers: Cerf and Kahn
 - "Fathers of the Internet"
 - In 1974, later led to TCP/IP
- Tackled the problems of interconnecting networks
 - Instead of mandating a single technology

Vint Cerf

Bob Kahn

© 2009 IEEE

Internet Reference Model

- Internet Protocol (IP) is the "narrow waist"
 - Supports many different links below and apps above

IP as a Lowest Common Denominator

- Suppose only some networks support QOS or security etc.
 - Difficult for internetwork to support
- Pushes IP to be a "lowest common denominator"
 - Asks little of lower-layer networks
 - Gives little as a higher layer service

IPv4 (Internet Protocol)

- Various fields to meet straightforward needs
 - Version, Header (IHL), Total length, Protocol, and Header Checksum

IPv4 (2)

- Some fields to handle packet size differences (later)
 - Identification, Fragment offset, Fragment control bits

CSE 461 University of Washington

IPv4 (3)

- Other fields to meet other needs (later, later)
 - Differentiated Services, Time to live (TTL)

CSE 461 University of Washington

IPv4 (4)

- Network layer of the Internet, uses datagrams
 - Provides a layer of addressing above link addresses (next)

Recap of network layer

Needed to deliver packets to their destination

Solves three problems

- Internetworking
- Addressing
- Routing and forwarding

IP Addresses

- IPv4 uses 32-bit addresses
 - Later we'll see IPv6, which uses 128-bit addresses
- Written in "dotted quad" notation
 - Four 8-bit numbers separated by dots

8 bits

8 bits

8 bits

8 bits

IP Prefixes

- Addresses are allocated in blocks called <u>prefixes</u>
 - Addresses in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary

IP Prefixes (2)

- Written in "IP address/length" notation
 - Address is lowest address in the prefix, length is prefix bits
 - E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 - So a /24 ("slash 24") is 256 addresses and /32 is 1 address

IP Forwarding

- Nodes use a table that lists the next hop for prefixes
- Lookup the destination address's prefix in the table

Prefix	Next Hop	
102.24.0.0/19	D	
192.24.12.0/22	В	
A		
B	C	

Host/Router Distinction

- In the Internet:
 - Routers do the routing, know way to all destinations
 - Hosts send remote traffic (out of prefix) to nearest router

Host Networking

- Consists of 4 pieces of data:
 - IP Address
 - Subnet Mask
 - Defines local addresses
 - Gateway
 - Who (local) to send non-local packets to for routing
 - DNS Server (Later)

Host Forwarding Table

Prefix	Next Hop			
My network prefix	Send on local link			
Default (0.0.0.0/0)	Send to my router			

[Ratuls-MacBook-Pro:19wi ratul\$ netstat -r -f inet grep 192						
default	192.168.88.1	UGSc	85	30	en0	
192.168.88	link#10	UCS	0	0	en0	!
192.168.88.1/32	link#10	UCS	2	0	en0	!
192.168.88.14/32	link#10 _	UCS	0	0	en0	!

Issues?

Where does this break down?

Bootstrapping (DHCP)
Finding Link nodes (ARP)

Dynamic Host Configuration Protocol (DHCP)

Bootstrapping

• Problem:

- A node wakes up for the first time ...
- What is its IP address? What's the IP address of its router?
- At least Ethernet address is on NIC

Bootstrapping (2)

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
- 2. DHCP: Automatically configure addresses

DHCP: Dynamic Host Configuration Protocol

- Invented around 1993, widely used now
- It <u>leases</u> IP address to nodes
- Provides other parameters too
 - Network prefix
 - Address of local router
 - DNS server, time server, etc.

DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

DHCP Addressing

- Bootstrap issue:
 - How does node send a message to DHCP server before it is configured?
- Answer:
 - Node sends <u>broadcast</u> messages that delivered to all nodes on the link-level network
 - Broadcast address is all 1s
 - IP (32 bit): 255.255.255.255
 - Ethernet (48 bit): ff:ff:ff:ff:ff

DHCP Messages

DHCP Messages (2)

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK

Address Resolution Protocol (ARP)

Sending an IP Packet

• Problem:

- A node needs Link layer addresses to send a frame over the local link
- How does it get the destination link address from a destination IP address?

ARP (Address Resolution Protocol)

 Node uses to map a local IP address to its Link layer addresses

ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target IP to identify itself
 - Uses broadcast to reach all nodes

ARP

Ethernet

ARP Messages

ARP Table

```
[Ratuls-MacBook-Pro:19wi ratul$ arp -a | grep 192
? (192.168.88.1) at e4:8d:8c:54<u>:</u>0:52 on en0 ifscope [ethernet]
```

Discovery Protocols

- There are more of them!
 - Help nodes find each other and services
 - E.g., Zeroconf, Bonjour
- Often involve broadcast
 - Since nodes aren't introduced
 - Very handy glue