
Slow Start (TCP Additive Increase)

TCP congestion control overview

Sender uses congestion window (cwnd)
• Sending rate (≈cwnd/RTT)

Sender uses loss as network congestion signal

Follow AIMD control law for a good allocation
• Goal is efficient and (roughly) fair allocation

CSE 461 University of Washington 2

TCP “Slow Start” Problem

We want to quickly get to the right cwnd but it varies
• Fixed window can be too inefficient or too aggressive
• Additive Increase adapts cwnd gently, but might take a

long time to become efficient

CSE 461 University of Washington 3

Slow-Start Solution

Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values

4

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start

Slow-Start Solution (2)

Eventually packet loss will occur when the network is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 5

Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value

6

AI

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 7

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 8

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

CSE 461 University of Washington 9

Fast Recovery
(TCP Multiplicative Decrease)

Inferring Loss from ACKs

•TCP uses a cumulative ACK
• Carries highest in-order seq. number
• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t
arrived
• Tell us some new data did arrive, but it was not next

segment
• Thus the next segment may be lost

CSE 461 University of Washington 12

Fast Retransmit

•Treat three duplicate ACKs as a loss
• Retransmit next expected segment
• Some repetition allows for reordering, but still detects loss

quickly

CSE 461 University of Washington 13

Ack 1 2 3 4 5 5 5 5 5 5

Fast Retransmit (2)

CSE 461 University of Washington 14

Ack 10
Ack 11
Ack 12
Ack 13

. . .

Ack 13

Ack 13
Ack 13

Data 14. . .
Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14 Retransmission fills

in the hole at 14
ACK jumps after
loss is repaired

.

Data 14 was lost
earlier, but got

15 to 20

Fast Retransmit (3)

• It can repair single segment loss quickly, typically
before a timeout
•However, we have quiet time at the sender/receiver

while waiting for the ACK to jump
•And we still need to MD cwnd …

CSE 461 University of Washington 15

Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data
has arrived
• Each new duplicate ACK means that some new segment

has arrived
• It will be the segments after the loss
• Thus advancing the sliding window will not increase the

number of segments stored in the network

CSE 461 University of Washington 16

Fast Recovery

•First fast retransmit, and MD cwnd
•Then pretend further duplicate ACKs are the

expected ACKs
• Lets new segments be sent for ACKs
• Reconcile views when the ACK jumps

CSE 461 University of Washington 17

Ack 1 2 3 4 5 5 5 5 5 5

Fast Recovery (2)

CSE 461 University of Washington 18

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14

Data 14 was lost
earlier, but got

15 to 20

Retransmission fills
in the hole at 14

Set ssthresh,
cwnd = cwnd/2

Data 21
Data 22

More ACKs advance
window; may send

segments before jump

Ack 13

Exit Fast Recovery

Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss
quickly and keeps the ACK clock running
•This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a

smaller cwnd
•TCP Reno combines slow-start, fast retransmit and

fast recovery
•Multiplicative Decrease is ½

CSE 461 University of Washington 19

TCP Reno

CSE 461 University of Washington 20

MD of ½ , no slow-start

ACK clock
running

TCP sawtooth

TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
•Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit

without guesswork

CSE 461 University of Washington 21

Network-Assisted Congestion
Control

Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid
congestion altogether!
• Reduces loss and delay

•But how can we do this?

CSE 461 University of Washington 23

Feedback Signals

•Delay and router signals can let us avoid congestion

CSE 461 University of Washington 24

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay Compound TCP
(Windows)

Hear about congestion early
Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

Hear about congestion early
Require router support

ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
•When congested, it marks affected packets (IP header)

CSE 461 University of Washington 25

ECN (2)

•Marked packets arrive at receiver
• TCP receiver informs TCP sender of the congestion

CSE 461 University of Washington 26

ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded

CSE 461 University of Washington 27

What’s new in transport protocols?

QUIC
MPTCP
BBR
DCTCP

QUIC

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

MPTCP: Multipath TCP

By Aclarembeau - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=49727919

BBR:
Bottleneck Bandwidth and
Round trip propagation

https://queue.acm.org/detail.cfm?id=3022184

https://queue.acm.org/detail.cfm?id=3022184

Reaction
Point (RP)

Congestion
Point (CP)

Notification
Point (NP)

RouterSender Receiver

If qlen >= K, mark ECN Echo ECN to RP

Estimate fraction of marked
packets

Adjust cwnd accordingly

Data Data

Ack

DCTCP at a glance

35

Recap: Transport protocols

Goal: Provide end-to-end message delivery to applications
• Reliable or not; messages or streams

Challenges:
• Dealing with packet losses
• Dealing with slow receivers (flow control) and network (congestion control)
• Adapting to network conditions

• Determine the right sending rate for yourself
• Individual behaviors resulting in efficient and fair resource use

Toolbox
• Timeouts/retransmissions, sliding windows, max-min fairness, AIMD, ….

