
Slow Start (TCP Additive Increase)



TCP congestion control overview

Sender uses congestion window (cwnd)
• Sending rate (≈cwnd/RTT)

Sender uses loss as network congestion signal

Follow AIMD control law for a good allocation
• Goal is efficient and (roughly) fair allocation
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TCP “Slow Start” Problem

We want to quickly get to the right cwnd but it varies
• Fixed window can be too inefficient or too aggressive
• Additive Increase adapts cwnd gently, but might take a 

long time to become efficient
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Slow-Start Solution

Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values
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Slow-Start Solution (2)

Eventually packet loss will occur when the network is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI
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Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value
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Slow-Start (Doubling) Timeline
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Increment cwnd
by 1 packet for 
each ACK



Additive Increase Timeline
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Increment cwnd by 1 
packet every cwnd
ACKs (or 1 RTT)



TCP Tahoe (Implementation)

Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout
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Fast Recovery 
(TCP Multiplicative Decrease)



Inferring Loss from ACKs

•TCP uses a cumulative ACK
• Carries highest in-order seq. number
• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t 
arrived
• Tell us some new data did arrive, but it was not next 

segment
• Thus the next segment may be lost
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Fast Retransmit

•Treat three duplicate ACKs as a loss 
• Retransmit next expected segment
• Some repetition allows for reordering, but still detects loss 

quickly
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Fast Retransmit (2)
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Fast Retransmit (3)

• It can repair single segment loss quickly, typically 
before a timeout
•However, we have quiet time at the sender/receiver 

while waiting for the ACK to jump
•And we still need to MD cwnd …
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Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data 
has arrived
• Each new duplicate ACK means that some new segment 

has arrived
• It will be the segments after the loss
• Thus advancing the sliding window will not increase the 

number of segments stored in the network
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Fast Recovery

•First fast retransmit, and MD cwnd
•Then pretend further duplicate ACKs are the 

expected ACKs
• Lets new segments be sent for ACKs 
• Reconcile views when the ACK jumps
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Fast Recovery (2)
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Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss 
quickly and keeps the ACK clock running
•This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a 

smaller cwnd
•TCP Reno combines slow-start, fast retransmit and 

fast recovery
•Multiplicative Decrease is ½ 
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TCP Reno
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TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
•Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit 

without guesswork
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Network-Assisted Congestion 
Control



Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and 
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid 
congestion altogether!
• Reduces loss and delay

•But how can we do this?
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Feedback Signals

•Delay and router signals can let us avoid congestion
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Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay Compound TCP 
(Windows)

Hear about congestion early
Need to infer congestion

Router 
indication

TCPs with Explicit 
Congestion Notification

Hear about congestion early
Require router support



ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
•When congested, it marks affected packets (IP header)
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ECN (2)

•Marked packets arrive at receiver
• TCP receiver informs TCP sender of the congestion
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ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded
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What’s new in transport protocols?

QUIC
MPTCP
BBR
DCTCP



QUIC

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html



MPTCP: Multipath TCP

By Aclarembeau - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=49727919



BBR: 
Bottleneck Bandwidth and 
Round trip propagation

https://queue.acm.org/detail.cfm?id=3022184

https://queue.acm.org/detail.cfm?id=3022184
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Recap: Transport protocols

Goal: Provide end-to-end message delivery to applications
• Reliable or not; messages or streams

Challenges:
• Dealing with packet losses
• Dealing with slow receivers (flow control) and network (congestion control)
• Adapting to network conditions

• Determine the right sending rate for yourself
• Individual behaviors resulting in efficient and fair resource use

Toolbox
• Timeouts/retransmissions, sliding windows, max-min fairness, AIMD, ….


