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Microservices are distributed systems
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Microservices are distributed systems
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Application networks: A new class of networks

Connect endpoints of an application, not anyone

Need rich message processing, not just IP

Built by application developers, not network engineers



Outline

e Background
e Service Mesh

e Application Defined Networks
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Building application networks
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Building application networks

Earlier: Custom code for each microservices
Problems:

e Huge developer burden
e Network policies evolves independently
e TrustIssues
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Solution: Service Mesh with Sidecar Pattern

Sidecar proxy handles all network logics
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Traffic Management

A/B testing / Traffic Shifting
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Resilience
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Chaos Engineering

Fault Injection

Delay Injection
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Observability
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Service Mesh

e 90% organization uses service mesh according to a recent CNCF survey’
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1Service meshes are on the rise - CNCF ‘22
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Service Mesh

e Build on general network architecture use by the Internet
o gRPC/HTTP/TCP/IP
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Service Mesh Challenges

High Overheads
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Kelsey Hightower &
&
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service mess /'sarvas mes/
noun

1. the result of spending more compute resources than
your actual business logic dynamically generating and
distributing Envoy proxy configs and TLS certificates.
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End-to-End Performance Overhead

e TCP mode can increase the latency by 0.6X and CPU usage by 0.9X

e gRPC mode can increase the latency by up to 2.7X and CPU usage by 1.6X
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Service Mesh Challenges

e High Overheads
o  Throughput/Latency/CPU

o  Overlapping/Unnecessary functionalities

o Information hiding
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Service Mesh Challenges

e High Overheads
o  Throughput/Latency/CPU

o Overlapping/Unnecessary functionalities

o Information hiding
e Non-portability

o Difficult to offload to kernel and hardware
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Service Mesh Challenges

e High Overheads
o  Throughput/Latency/CPU

o Overlapping/Unnecessary functionalities

o Information hiding

e Non-portability
What have been the biggest
non-technical challenges to

adopting a service mesh?

Shortage of Architectural Lack of guidance,  Choosing be- None of Securing
engineering and technical blueprints, or tween projects the above management
expertise and complexity best practices and products

CNCF Survey 2022 28

o Difficult to offload to kernel and hardware
e Difficult to use

o APl is complex and evolving

o Poor extensibility



apiVersion: networking.istio.io/vlalpha3
kind: EnvoyFilter
metadata:
name: reviews-lua
namespace: bookinfo
spec:
workloadSelector:

Service Mesh Challenges e

# The first patch adds the lua filter to the listener/http connection manager
- applyTo: HTTP_FILTER
tohe

context: SIDECAR_INBOUND
listener:
portNumber: 8080
TiIterChain:

H filter:
o igh Overheads = P ——

subFilter:
name: "envoy.filters.http.router"

patch:
operation: INSERT BEFORE
Th h t/L t /CPU value: # lua filter specification
o roughput/Latency. L e
typed_config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
. . . inlineCode: |
o Overlapping/Unnecessary functionalities
-- Make an HTTP call to an upstream host with the following headers, body, and timeout.
local headers, body = request_handle:httpCall(
"lua_cluster",
{
":method"] = "POST",
:path"] = "/acl"
:authority"] = "internal.org.net"

o Information hiding

IE
[
[

"authorize call",

e Non-portability

The second patch adds the cluster that is referenced by the lua code
cds match is omitted as a new cluster is being added

applyTo: CLUSTER

match:

o Difficult to offload to kernel and hardware pacontext SIDECAR_OUTSOUND

operation: ADD
value: # cluster specification
name: "lua_cluster”

H H type: STRICT DNS
° ifficult to use
1b_policy: ROUND_ROBIN

load_assignment:

cluster_name: lua_cluster
endpoints:

o APl is complex and evolving "t

socket_address:
protocol: TCP

O Poor eXtenSibiIity address: "internal.org.net"

port_value: 8888

* %

Customize Istio Configuration



Application Defined Networks



Idea: Application Defined Networks (ADN)

Developers specify what the network should do at a high level

A Application-relevant abstractions
d Declarative, portable

A controller auto generate an optimized application-specific implementation

A Determine what processing happens and how (incl. hardware offload)
A Determine message headers
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Idea: Application Defined Networks (ADN)

Developers specify what the network should do at a high level

A Application-relevant abstractions
d Declarative, portable

A controller auto generate an optimized application-specific implementation

A Determine what processing happens and how (incl. hardware offload)
A Determine message headers

Meets application-specific needs
without a burdened implementation that does it all
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ADN architecture
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Example

S1-.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

- eBPF
-

RPC
library
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Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)
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