Application Networks

Xiangfeng Zhu
CSE461

From monolith to microservices

l

Frontend

Payment Product

User Ad

Monolithic Application

From monolith to microservices

l

Frontend

Payment Product

User Ad

Monolithic Application Microservices

From monolith to microservices

Uper NETFLIX amazon

From monolith to microservices

l

Frontend

Payment Product

User Ad

Function calls Network Calls

Microservices are distributed systems

)

Microservice Microservice

G

Microservices are distributed systems

Routing and Discovery

Timeout and Retry

Microservice) Microservice

Load Balancing

Microservices are distributed systems

Routing and Discovery Encryption

Timeout and Retry

Microservice) Microservice

Load Balancing
Authorization and Authentication

Rate Limiting

Application networks: A new class of networks

Connect endpoints of an application, not anyone

Need rich message processing, not just IP

Built by application developers, not network engineers

Outline

e Background
e Service Mesh

e Application Defined Networks

10

/ Container \

Service A

[Business Logic
(Comm. Config
(
(

Retry Logic

]
)
Security Logic |
)
]

Tracing...

S

Building application networks

Container

JVM

Service B

Business Logic

Comm. Logic

Security Logic

Retry Logic

Tracing

Container

JVM

Service C

Business Logic

Comm. Logic

Security Logic

Retry Logic

.~
(
[

[
[
S

S SLCODY

Tracing

)

1

Building application networks

Earlier: Custom code for each microservices
Problems:

e Huge developer burden
e Network policies evolves independently
e TrustIssues

12

Solution: Service Mesh with Sidecar Pattern

Sidecar proxy handles all network logics

©)

©)

©)

Traffic control / Routing
Resilience
Observability

Security

Policy Enforcement

Container

Sidecar

Comm. Config

Security Logic

Retry Logic

Tracing...

Service A

/
.

|

|

|
&

|

Business Logic

-

&

NS S Sy

13

Application

4 N

Microservice

____________ |

Service Mesh Architecture

4 N

Microservice

[___________

Sidecar

Control Plane

Control Plane

Sidecar

14

Traffic Management

A/B testing / Traffic Shifting

Service B
Production

95%

Service A

Service B
Staging

5%

Service A

Traffic Mirroring

Service B
Production

Service B
Staging

15

Resilience

Timeout
Retry

Circuit
breaking

3s

x—
___| |

|V B

¢ N
[Sidecar
Service A
& ~/

~

Sidecar

|

|
|

Service B

)

16

Chaos Engineering

Fault Injection

Delay Injection

-

|

\\
Sidecar J(_ ________
2%
Service A }
=~/

3

[Sidecar T
Service B }
=~/

3

17

Security

g) [R
[Sidecar J [Sidecar }
mTLS Encryption
& Authentication
Service A } Service B }
3 =/ 3 =/

Authorization

Service C

Sidecar

Sidecar

Service A

T\ Y

\
Sidecar }

[Service B

=/

Observability

P\Qﬁﬂ LINKERD Namespace > emojivoto

Namespaces

Control Plane

(N

EMOJIVOTO - web

Cron Jobs

vote-bot

Daemon Sets

Deployments

Services
Jdbs Deployments =
Pods Deployment Meshec Success Rate RPS P50 Latency P95 Latency P99 Latency
Replica Sets

s i 100.00% @ 227 Tms Tms Tms

Q002600000

Replication Controllers

Service Mesh

e 90% organization uses service mesh according to a recent CNCF survey’

= i| |i \
\ Istio - </
‘v LINKERD
/O\ VMware Tanzu A
: Google Cloud Anthos
OO . | . AW
a2e CllluM ‘App Mesh

1Service meshes are on the rise - CNCF ‘22

21

Service Mesh

e Build on general network architecture use by the Internet
o gRPC/HTTP/TCP/IP

0s

/ NIC || Sidecar | Service B.1

2

NIC NIC || Sidecar || Service B.2

&

underlay network 0s

Service Mesh Challenges

High Overheads

O

Throughput / Latency / CPU

oS

Sidecar

Service B.1

/ NIC

i

NIC

.-

Service Mesh Data Path

NIC

Sidecar

Service B.2

underlay network

0s

23

Kelsey Hightower &
&
)

service mess /'sarvas mes/
noun

1. the result of spending more compute resources than
your actual business logic dynamically generating and
distributing Envoy proxy configs and TLS certificates.

24

End-to-End Performance Overhead

e TCP mode can increase the latency by 0.6X and CPU usage by 0.9X

e gRPC mode can increase the latency by up to 2.7X and CPU usage by 1.6X

6000 -
5000 -
2 4000 1
=
£ 3000
o
3 2000 -
1000 -

B Base

=1 Overhead

%
A

70,
S
%a%a%

XXX
0’0

’v
g
XXX

r
3
:

(X

gRPC TCP
Q2

gRPC

CPU(Virtual Cores)
¥ &8 8

100 -

I Base

8

(=]

TCP

Ql

| E= Overhead

TCP

gRPC

Q2

Latency and CPU overhead of Envoy

25

Service Mesh Challenges

e High Overheads
o Throughput/Latency/CPU

o Overlapping/Unnecessary functionalities

o Information hiding

26

Service Mesh Challenges

e High Overheads
o Throughput/Latency/CPU

o Overlapping/Unnecessary functionalities

o Information hiding
e Non-portability

o Difficult to offload to kernel and hardware

27

Service Mesh Challenges

e High Overheads
o Throughput/Latency/CPU

o Overlapping/Unnecessary functionalities

o Information hiding

e Non-portability
What have been the biggest
non-technical challenges to

adopting a service mesh?

Shortage of Architectural Lack of guidance, Choosing be- None of Securing
engineering and technical blueprints, or tween projects the above management
expertise and complexity best practices and products

CNCF Survey 2022 28

o Difficult to offload to kernel and hardware
e Difficult to use

o APl is complex and evolving

o Poor extensibility

apiVersion: networking.istio.io/vlalpha3
kind: EnvoyFilter
metadata:
name: reviews-lua
namespace: bookinfo
spec:
workloadSelector:

Service Mesh Challenges e

The first patch adds the lua filter to the listener/http connection manager
- applyTo: HTTP_FILTER
tohe

context: SIDECAR_INBOUND
listener:
portNumber: 8080
TiIterChain:

H filter:
o igh Overheads = P ——

subFilter:
name: "envoy.filters.http.router"

patch:
operation: INSERT BEFORE
Th h t/L t /CPU value: # lua filter specification
o roughput/Latency. L e
typed_config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
. . . inlineCode: |
o Overlapping/Unnecessary functionalities
-- Make an HTTP call to an upstream host with the following headers, body, and timeout.
local headers, body = request_handle:httpCall(
"lua_cluster",
{
":method"] = "POST",
:path"] = "/acl"
:authority"] = "internal.org.net"

o Information hiding

IE
[
[

"authorize call",

e Non-portability

The second patch adds the cluster that is referenced by the lua code
cds match is omitted as a new cluster is being added

applyTo: CLUSTER

match:

o Difficult to offload to kernel and hardware pacontext SIDECAR_OUTSOUND

operation: ADD
value: # cluster specification
name: "lua_cluster”

H H type: STRICT DNS
° ifficult to use
1b_policy: ROUND_ROBIN

load_assignment:

cluster_name: lua_cluster
endpoints:

o APl is complex and evolving "t

socket_address:
protocol: TCP

O Poor eXtenSibiIity address: "internal.org.net"

port_value: 8888

* %

Customize Istio Configuration

Application Defined Networks

Idea: Application Defined Networks (ADN)

Developers specify what the network should do at a high level

A Application-relevant abstractions
d Declarative, portable

A controller auto generate an optimized application-specific implementation

A Determine what processing happens and how (incl. hardware offload)
A Determine message headers

31

Idea: Application Defined Networks (ADN)

Developers specify what the network should do at a high level

A Application-relevant abstractions
d Declarative, portable

A controller auto generate an optimized application-specific implementation

A Determine what processing happens and how (incl. hardware offload)
A Determine message headers

Meets application-specific needs
without a burdened implementation that does it all

32

ADN architecture

Specification

b

Controller
Compile and

5 O Deploy
(568 -
A

Control Signal

Feedback l

Optimizer

33

Example

S1-.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

- eBPF
-

RPC
library

34

Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

NIC

NIC

35

Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

NIC

NIC

36

Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

NIC

NIC

37

Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

NIC

NIC

38

Example

S1.S2: LoadBalancing-Logging-Compression-FaultInjection(0.1)

39

