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Physical Layer
● Media types

○ Wired - twisted pair, coaxial
○ Fiber - long, thin strands of glass
○ Wireless - broadcasted signal

■ Potentially many receivers
■ Nearby signals interfere at a receiver



Coding and Modulation
● Physical layer - translate analog signal on wires into digital bits
● How can we send information across a link?
● Coding - directly on a wire

○ Simplest scheme - Non-Return to Zero, high voltage represents 1, low voltage represents 0
○ Better schemes account for clock recovery - 4B/5B coding, Manchester encoding, etc

● Modulation - carrying RF signals by modulating a carrier signal



Fundamental Limits
● Key Channel Properties - B: Bandwidth (hertz), S: Signal strength, N: Noise
● Nyquist Limit

○ Maximum symbol rate is 2B
○ With V signal levels, ignoring noise,                                                                                             

max bit rate R = 2B log_2(V) bits/sec

● Shannon Capacity
○ Signal-to-Noise ratio (S/N) determines number of distinguishable voltage levels
○ Max carrying rate C = B log_2(1 + S/N) bits/sec

■ Max rate at transmitting without loss over a random channel
■ Increasing signal power gives diminishing returns
■ Increasing bandwidth increases capacity linearly



Practice Questions:
Q-1 Imagine that you are in charge of engineering the device responsible for 
processing a 4B/5B coding scheme and writing it onto a link with bandwidth 
8Hz (Hertz). Your device can vary voltage in the range -1V (Volts) to 1V.

Q-1.1 Ignoring noise, what is the maximum bit rate your device can write to 
the wire if you partition the voltage range into 16 levels? Answer in bps and 
show your work.



Q 1.2 Now assume that the noise across the link is guaranteed to be strictly 
less than 0.25V. What is the maximum number of levels you can use within the 
the voltage range and still tolerate noise (that is, correctly detect the 
transmitted level at the receiver)? Show your work.



Q-2 Consider a network between Alice and Bob with link lengths and bandwidths as shown. R1 and 
R2 are routers in between that have negligible packet processing and queuing delay.

a) What is the net propagation delay of packets from Alice to Bob? Assume speed of
signal in medium = 2x10^8 m/s



b)    What is the throughput experienced by packets from Alice to Bob?

c)    What is the total delay experienced by packets from Alice to Bob assuming a packet
size of 10 Bytes?

d)    Is the link propagation delay limited or throughput limited?

e)    At what packet size would the answer to question (4) be “both delay and throughput-
limited”?

f)     Can you change the speed of exactly one link so that your answer to question (4) be
“both delay and throughput-limited”?

e)     Assume ACKs have a negligible size. What is the total round-trip delay? Assume a
packet size of 10 Bytes as before.



True and False
a ) The Internet mandates that if Apple Inc. makes the physical and datalink layer, Apple must 
implement corresponding the network layer as well.

b) Under no circumstances would one choose to use NRZ encoding over Manchester encoding.

c) Nyquist sampling theorem proves that with a bandwidth of 20 MHz, you cannot send data faster 
than 40 Mbps.



Aside: Network Security
What could an attacker (in the network) still learn from an HTTPS connection (assuming HTTPS 
is working as intended and that the cryptography has not been broken)?

● Message Content        Messages sent over an HTTPS connection are encrypted

● Destination IP Address        The destination IP lies in the IP header and is used to route the packet to its 

destination; it is visible to the attacker.

● Source IP Address       Similarly, the source IP is also visible to the attacker

● Time when the message was sent       Another piece of metadata attackers have access to; attackers 

can observe timing of packets being sent

● Private key used        Assuming cryptography has not been broken, the private key is encrypted and 

sent over the network and cannot be learned by the attacker.



Aside: Network Security
A message that is encrypted via symmetric encryption and uses MAC ensures the following:

● detecting whether message contents were changed       As MAC is being used, it can be used to validate 

whether or not the message has been altered

● message content is kept private       Message is encrypted and its contents are not visible to attackers

● messages cannot be intercepted and redirected        Symmetric encryption alone cannot guarantee 

that packets are not intercepted/redirected; attackers can modify packet headers and redirect them

● identity of the message's sender is known        The receiver only knows that a host having the same 

secret key has sent them the message. There is no inherent information on the identity of the sender

● message is fresh / was not replayed        Not guaranteed by symmetric encryption / MAC alone, 

requires timestamp or nonce



Aside: Network Security
Which statements are true about VPNs with IPSEC (secured VPN):

● VPNs operate at the network layer        VPNs use tunneling and encapsulate IP packets with IP headers 

● Provide confidentiality AND authenticity        granted by IPSEC

● Sends a packet through tunnels by rewriting the original packet's IP source/destination        The 

existing header is maintained; the IP packet is wrapped with another IP header

● If a VPN server is compromised, anonymity is lost        A compromised VPN server means attackers 

could trace back packets to their original source, identifying the user who has sent them

● No entity can tell whether or not a host is using a VPN        Internet Service Providers (ISPs) can still 

detect whether or not someone is using a VPN.



Aside: Network Security
Explain the high level-steps (transport and above) taken when making an HTTPS request to 

Google.com, including receiving and handling. Assume nothing is cached.

● Address Lookup: 

○ Browser makes a DNS query to resolve “www.google.com” to local DNS name server (recursive).

○ Local name server performs iterative queries. First queries root name server, then .com, finally 

obtaining IP address of google.com

○ Local name server caches IP address(es) and sends back response to the client

○ Client receives IP address and proceeds to establish a TCP connection.

http://www.google.com


Aside: Network Security
Explain the high level-steps (transport and above) taken when making an HTTPS request to 

Google.com, including receiving and handling. Assume nothing is cached.

● Transport Connection w/ Encryption

○ Client establishes a TCP connection via three-way handshake

○ TLS handshake begins:

■ Client and google.com negotiate encryption parameters (algorithm to use among other things)

■ Google.com sends its certificate for the client to verify. Client verifies certificate against list of 

Certificate Authorities

■ Client generates symmetric session key, encrypts it with google.com’s public key and sends it

■ Google.com decrypts message using its private key and obtains session key

■ Future messages are now encrypted/decrypted using session key



Aside: Network Security
Explain the high level-steps (transport and above) taken when making an HTTPS request to 

Google.com, including receiving and handling. Assume nothing is cached.

● HTTP Connection/Data Transfer

○ Client sends HTTP request(s) (GET/POST/other, sets appropriate headers) via secure HTTP 

connection. Connection is persistent and can pipeline multiple requests.

○ Google.com receives requests, processes them, generates appropriate HTTP response

○ Client receives HTTP response, processes it by parsing content and/or fetching embedded 

resources, then renders result

○ Client cleans up TCP connections once idle



Link Layer
● Goal: Transfer frames over one or more connected links

● Framing - how do we interpret a stream of bits as a sequence of frames?
○ Fixed-size frames (motivation), wasteful for small payloads
○ Byte count (motivation), store length of frame as header for frame
○ Byte stuffing/bit stuffing, encode flag at byte/bit level at start and end of frame



Byte Stuffing Exercise
Assume you have the following bytes to be sent over the link. What are the 
bytes after stuffing?

Original packets:



Byte Stuffing Exercise
Assume you have the following bytes to be sent over the link. What are the 
bytes after stuffing?

Original bytes:

After stuffing:



Error Detection, Correction
● Noise may flip some received bits in message

● Key idea: error detection/correction codes
○ Add check bits to the message to let some errors be detected (and more required 

for correction)

● Tradeoffs:
○ Adding check bits -> larger bandwidth requirements
○ Need modest computation to detect/correct error



Error Detection, Correction cont.
● Hamming distance of a coding - minimum error distance between any pair 

of codewords that cannot be detected
○ e.g. 1-dimensional parity has Hamming distance of 2, since 2 bit-flips required to get to 

next valid codeword

○ 1 0 0 0 | 1 -> 0 1 0 0 | 1, both pass error detection

● Error detection:
○ For a coding of distance d + 1, up to d errors will always be detected

● Error correction:
○ For a coding of distance 2d + 1, up to d errors can always be corrected by mapping to 

closest valid keyword

● Larger messages use checksums for error detection



Hamming distance cont.
● Given an unknown algorithm that has Hamming Distance of 9, What is the 

maximum number of errors it can reliably detect?

● What is the maximum number of errors it can reliably fix?



Hamming distance cont.
● Given an unknown algorithm that has Hamming Distance of 9, What is the 

maximum number of errors it can reliably detect?

8. As per the formula, d + 1 = 9, so d = 8 errors that can always be 
detected

● What is the maximum number of errors it can reliably fix?

5. As per the formula, 2d + 1 = 9, d = 4 errors that can always be corrected



Error Detection, Correction cont.
● Why is error correction harder?

○ Need to narrow down position of the error, but errors can also occur in the check bit

● With a code with a Hamming distance of at least 3,
○ Single bit errors will be closest to a unique valid codeword

● Error correction:
○ Needed when errors are expected
○ Or no time for retransmissions
○ Used in physical layer (802.11, DVB, WiMAX), application layer (FEC)

● Error detection:
○ More efficient when errors not expected
○ And errors are large when they do occur
○ Used with retransmission in link layer and above layers for residual errors



Multiple Access
● Multiplexing shared link usage

○ Time Division Multiplexing (TDM) - users take turns on a fixed schedule
○ Frequency Division Multiplexing (FDM) - users placed on different frequency 

bands
○ Tradeoffs?

● Centralized vs. Distributed Multiple Access
○ Centralized, use a “scheduler” to choose who transmits and when

■ E.g. cellular networks (tower coordinates)
■ Scales well + efficient, but long setup and management

○ Distributed, have participants “figure it out” somehow
■ E.g. WiFi networks
■ Operates well in low load and easy setup, but hard to scale



Distributed (random) Access
● How do nodes share a single link? Who sends when?

○ Aloha - just send it whenever
○ CSMA (Carrier Sense Multiple Access) - listen for activity before we send
○ CSMA/CD (with Collision Detection) - receiver detects collision and aborts 

(jams)

● CSMA “Persistence”
○ Each node waits 2 * delay seconds to hear of a collision
○ Problem - multiple waiting nodes will queue up, then collide

■ Ideally want N senders to send with probability 1/N
■ Solution: Binary Exponential Backoff (BEB)

● 1st collision, wait 0 or 1 frame times
● 2nd collision, wait from 0 to 3 times
● 3rd collision, wait from 0 to 7 times ....



Wireless Complications
1. Media is infinite - can’t Carrier Sense
2. Nodes (usually) can’t hear while sending - can’t Collision 

Detect
Hidden Terminal Problem:
● A and C can’t hear each other, but 

collide at B

Exposed Terminal Problem:
● B and C can hear each other, but 

don’t collide at A and D



MACA
● Uses short handshake instead of CSMA

● Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame 

length)
2. The receiver replies with a CTS (Clear-To-Send, with frame length)
3. Sender transmits the frame while nodes hearing the CTS stay silent



MACA
Hidden Terminal Problem:
● A and C can’t hear each other, but 

collide at B

Exposed Terminal Problem:
● B and C can hear each other, but 

don’t collide at A and D



Switching
● Modern Ethernet uses switches instead of multiple access

○ Convenience running wires to one location
○ More reliable - wire cut is not a single point of failure

● Switch Forwarding
○ Switch needs to find right output port for destination address
○ Backward learning

■ To fill table, looks at source address of input frames
■ To forward, looks up address in table or broadcasts to all ports if not 

found

● Issue - forwarding loops
○ Solution, each switch runs distributed spanning tree algorithm
○ Finds subset of links w/ no loops and reaches all switches


