
Sections Week 7

Jason Zhang, Tapan Chugh

Administrivia

● Quiz tomorrow, make sure you review the recent slides about it.

● Assignment - 4 is due May 23rd.

● Project - 3 is due May 31st.

Internet Checksum

● Sum is defined in 1s complement arithmetic (must add back carries)
○ And it’s the negative sum

● “The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit

words …” – RFC 791

● In other words, it’s the value that when added to the header, the result is 0xffff

Example Problem 1

Message: 0xabc8983c1001bd02

Solution 1

 abc8
 983c
 1001
 bd02
-------- 1) First sum normally
0x21107
-------- 2) Back carry
0x1109
-------- 3) Take one’s complement
0xeef6

0xeef6

Example Problem 2

Message: 0xc2b4104a12001b01

Solution 2

 c2b4
 104a
 1200
 1b01
-------- 1) First sum normally
0xffff
-------- 2) Back carry
0xffff
-------- 3) Take one’s complement
0x0000

0x0000

Interesting Things to Note

● As stated earlier, the new sum of the header should be 0xffff

● Doesn’t check the order of the two byte blocks

● Must be recomputed every time the header changes, including with TTL decreases or when ECN is

set

CRC

● Uses a generator polynomial and polynomial division to calculate a error-detecting code.

● For a polynomial of degree n, it creates a check of n bits.

Example Problem 1

Message: 0b10100110

Polynomial: x + 1

Solution 1

← The actual remainder is 0, and thus the CRC remainder is 0.

← Note: use XOR instead of minus.

0b0

Example Problem 2

Message: 0b11100101

Polynomial: x3 + x2

Solution 1

← The actual remainder is 1, we add n bits then re-zero out to get

CRC, done above.

← The actual CRC

0b100

Interesting Things to Note

● x + 1 as a generator polynomial results in a parity bit.

● Has the nice property of being easy to implement in hardware.

● Doesn’t guard against intentional changing of data.

