Sections Week 7

Jason Zhang, Tapan Chugh

Administrivia

- Quiz tomorrow, make sure you review the recent slides about it.
- Assignment 4 is due May 23rd.
- Project 3 is due May 31st.

Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - $\circ \qquad \text{And it's the negative sum} \\$
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." RFC 791
- In other words, it's the value that when added to the header, the result is Oxffff

Message: 0xabc8983c1001bd02

Solution 1

abc8	
983c	
1001	
bd02	
	1) First sum normally
0x21107	
	2) Back carry
0x1109	
	3) Take one's complement
0xeef6	

Message: 0xc2b4104a12001b01

Solution 2

c2b4	
104a	
1200	
1b01	
1) First sum normally
Øxffff	
2	2) Back carry
Øxffff	
3	3) Take one's complement
0x0000	

Interesting Things to Note

- As stated earlier, the new sum of the header should be Oxffff
- Doesn't check the order of the two byte blocks
- Must be recomputed every time the header changes, including with TTL decreases or when ECN is set

ir v4 neader format																																					
Offsets	Octet					()								1		2										3										
Octet	Bit	0	1	2	2	3	4	5	6	7	8	9	10	11	12	13	14	1	5 16	17	7	18	19	20	21	22	23	3	24	25	26	27	28	29	30	D	31
0	0	Version IHL DSCP ECN														Total Length																					
4	32		Identification															Flag	gs		Fragment Offset																
8	64	Time To Live Protocol Header Checksu														sun	۱																				
12	96		Source IP Address																																		
16	128		Destination IP Address																																		
20	160																																				
:	:																0	pti	<mark>ions (</mark> i	f IHL	_>	- 5)															
56	448																																				

ID 41 1 4

CRC

- Uses a generator polynomial and polynomial division to calculate a error-detecting code.
- For a polynomial of degree n, it creates a check of n bits.

Message: 0b10100110 Polynomial: x + 1

Message: 0b11100101 Polynomial: x3 + x2

Interesting Things to Note

- x + 1 as a generator polynomial results in a parity bit.
- Has the nice property of being easy to implement in hardware.
- Doesn't guard against intentional changing of data.

$\operatorname{CRC}(x \oplus y) = \operatorname{CRC}(x) \oplus \operatorname{CRC}(y)$