
Security and Project 3
Tapan and Ghaith

Administrivia

● HW 4 due 05/23
● Project 1 Updated Submission due 11 PM Friday 05/12

○ In-person/Zoom OH on Friday:
■ 11:30 AM - 12:30 PM (Location TBD)
■ 2:30 PM - 3:30 PM (Location TBD)
■ Will confirm on ed today

Symmetric (Secret Key) Encryption

●Alice and Bob have the same secret key, KAB

Bob
Encrypt DecryptHi there

Ciphertext

○ Anyone with the secret key can encrypt/decrypt
Plaintext

Plaintext

Alice

Secret key Secret key

I networks I networks

Introduction to Computer Networks 3

K
AB

K
AB

Public Key (Asymmetric) Encryption

Encrypt DecryptHi there

Ciphertext

● Alice and Bob have public/private key pairs (KB / KB)
-1

○ Public keys are well-known, private keys are secret

Plaintext
Plaintext

Alice

Bob’s
public
key

Bob

Bob’s
private

key

I networks I networks

Introduction to Computer Networks 4

K
B

-1
K

B

Public Key Encryption (2)

●Alice encrypts w/ Bob’s pubkey KB; anyone can send

B● Bob decrypts w/ his private key K -1; only he can

Encrypt DecryptHi there

Ciphertext

Plaintext
Plaintext

Alice

Bob’s
public
key

Bob

Bob’s
private

key

I networks I networks

Introduction to Computer Networks 5

K
B

-1
K

B

How can we trust a public key?

Certificates

•A certificate binds pubkey to identity, e.g., domain
•Distributes public keys when signed by a party you trust
•Commonly in a format called X.509

Introduction to Computer Networks 6

Signed by CA

PKI (Public Key Infrastructure)

•Adds hierarchy to certificates to let parties issue
•Issuing parties are called CAs (Certificate Authorities)

Introduction to Computer
Networks

7

I certified the
ABC website!

I certified the
ABC website!

PKI (2)

Introduction to Computer Networks 9

•Need public key of PKI root and trust in servers on
path to verify a public key of website ABC

•Browser has Root’s public key
•{RA1’s key is X} signed Root
•{CA1’s key is Y} signed RA1
•{ABC’s key Z} signed CA1

PKI (3)

•Browser/OS has public keys of
the trusted roots of PKI

•>100 root certificates!

•That’s a problem …
•Inspect your web browser

Certificate for wikipedia.org
issued by DigiCert

Introduction to Computer Networks 10

Introduction to Computer Networks 11

PKI (4)

•Real-world complication:
•Public keys may be compromised
•Certificates must then be revoked

•PKI includes a CRL (Certificate Revocation List)
•Browsers use to weed out bad keys

Bufferbloat

13

“Bufferbloat is a cause of high
latency in packet-switched
networks caused by excess
buffering of packets” –
Wikipedia

Let’s revisit network delays

● Previously we studied how to calculate delays for a network

○ RTT: ~typically defines the latency for a small packet round-trip

○ Assumption: Network is unloaded (nothing else going on)

○ This is not often true in practice

● What changes when something else is going on?

○ https://www.waveform.com/tools/bufferbloat

○ Observe unloaded vs loaded latency

● What’s going on here?

14

https://www.waveform.com/tools/bufferbloat

Let’s investigate this further…

● Recall the equations to calculate latency

● Queueing delay: How long packet spends in switch buffers

○ Queueing delay ∝ # packets queued

○ For unloaded network: 0
○ For loaded network: depends how packets are sent

What happens with TCP Reno

● Host doesn’t know the bandwidth of the
bottleneck link.

● TCP Reno relies solely on packet
losses to guide how fast to send.

○ It keeps sending faster and faster until a
packet drops.

● With a queue, this can fill up the queue
pretty quickly.

● Larger the switch queue capacity,
more the delay

○ Called Bufferbloat
16

Bufferbloat – Problem

● Suppose h1 knows to send at 1.5 Mb/s,
what’s the RTT when the queue is full?

○ …when it’s not full?
● TCP at the end of the day will operate at

the bottleneck bandwidth, but is it
necessary to fill up the queue?

17

How do solve this this?

● Problem: Packet loss is a bad signal of congestion
○ Aside: packet losses because of other reasons can also mess up performance

● What else can we do?

● Proposal #1: Active Queue Management
○ Switch tells sender that it’s running close to congestion
○ Explicit Congestion Notification (ECN): Mark a bit in the packet IP header
○ Challenges: Requires switch hardware support; If mixed with regular TCP flows,

it takes over all the bandwidth because it works too well
○ Used in datacenters (DCTCP), not on the internet

● Proposal #2: Try to find the optimal point using measurements
○ BBR from Google is one deployed example
○ We will study this

Bufferbloat aware transport: BBR

● Optimum operating point:
○ (Max BW, Min RTT)
○ Product is called Bandwidth Delay Product (BDP)

● BBR
○ Estimate min RTT, bottleneck bandwidth via probing

and measuring performance.
○ Keep inflight bytes equal to BDP

19

20

Project 3 – Goal

● Simulate bufferbloat problem.
● See the worse performance when queue size is larger
● See the difference between TCP Reno and TCP BBR.

Experiment Setup

● Long-lived TCP flow from h1 to h2
○ Simulate background traffic

● Back-to-back ping from h1 to h2
○ Measure RTT

● Spawn a webserver on h1 and
periodically fetch a page

○ Simulate more important load
○ Measure time

● Plot time series of RTT and
number of queued packets.

● Run the experiment with

21

○ Q=20 and Q=100
○ Reno and BBR
○ 4 experiments total

Detour – Hypothesize

In groups of 3-4,...

● In your own words, what is bufferbloat problem?
● For each of the 4 experiments (Q=20 or 100; and with Reno

or BBR),
○ How do the webpage fetch time compare?

● How would plot between queue size and time look like for
TCP Reno?

22

23

Detour – Hypothesize

In groups of 3-4,...

● In your own words, what is bufferbloat
problem?

● For each of the 4 experiments (Q=20 or
100; and with Reno or BBR),

○ How do the webpage fetch time compare?
● How would plot between queue

utilization and time look like for TCP
Reno?

Q=20 Q=100

Reno <;
<;=;>

=;>
<;=;>

BBR <; =;>

24

Setup

● Use Mininet VM (same as Project 2)
● Get the starter code and install dependencies

cd ~

wget
https://courses.cs.washington.edu/courses/cse461/22wi/projects/project3/resources/project3.
zip
unzip project3.zip

sudo apt-get

update

sudo apt install python3-pip

sudo python3 -m pip install mininet matplotlib

25

Starter Code

● run.sh
○ Run the entire experiment

■ Run bufferbloat.py on q=20 and q=100
■ Generate latency and queue length graphs

● bufferbloat.py
○ Complete the TODOs

■ Setup the mininet topology and the experiment
■ Write shell commands to do the measurements

Long-lived TCP Flow

● Starter code sets up iperf server on h2

● Goal: start iperf client on h1, connect to h2
○ Should be “long-lasting”, i.e. for time specified by

--time parameter

● How do I connect to a certain IP or make
the connection long-lasting?

○ man pages are your friend!
○ type `man iperf` in a Linux terminal

26

Ping Train

● Goal: Start “ping train” between h1 and h2
○ Pings should occur at 10 per second interval
○ Should run for entire experiment

● How do I specify the ping interval and how
long the ping train runs?

○ man pages are your friend!
○ type `man ping` in a Linux terminal

● Write the RTTs recorded from `ping` to
{args.dir}/ping.txt

○ See starter code comments for more detail

27

Download Webpage with curl

● Starter code spawns webserver on h1

● Goal: Use `curl` to measure fetch time to
download webpage from h1

○ Starter code has hint on formatting curl command
○ Make sure `curl` doesn’t output an error

■ Errors report very small latency

● No need to plot fetch times; just need to
report average fetch time for each
experiment.

28

Plotting

● Starter code contains scripts for plotting,
`plot_queue.py`, `plot_ping.py`

○ Expects queue occupancy in $dir/q.txt, ping
latency in $dir/ping.txt

○ Plots are useful for debugging!

● Part 3, run same experiments with TCP
BBR instead of TCP Reno

○ How do you expect the graph outputs to differ?

Q = 20

29

Q = 100

