Wireless MACs

- How do wireless nodes share a single link? (Yes, this is WiFi!)
 - Build on our simple, wired model

Wireless Complications

- Wireless is more complicated than wired (surprise!)
 - 1. Media is infinite can't reliably Carrier Sense
 - Nodes usually can't hear while sending can't Collision Detect

`≠ CSMA/CD

No CS: Different Coverage Areas

• Wireless signal is broadcast and received nearby, where there is sufficient SNR

CSE 461 University of Washington

No CS: Hidden Terminals

- Node C is a <u>hidden terminal</u> when A sends to B
 - Similarly, A is a hidden terminal when C sends to B
 - A, C can't hear each other (to coordinate) yet collide at B
 - We want to avoid the inefficiency of collisions

CSE 461 University of Washington

No CS: Exposed Terminals

- B, C are <u>exposed terminals</u> when sending to A, D
 - Can hear each other yet don't collide at receivers A and D
 - We want to send concurrently to increase performance

Nodes Can't Hear While Sending

- With wires, detecting collisions (and aborting) lowers their cost
- With wireless, more wasted time

Wireless Problems:

• Ideas?

MACA: Multiple Access w/ Collision Avoidance

- MACA uses a short handshake instead of CSMA (Karn, 1990)
 - 802.11 uses a refinement of MACA (later)
- Protocol rules:
 - 1. A sender node transmits a RTS (Request-To-Send, with frame length)
 - 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
 - 3. Sender transmits the frame while nodes hearing the CTS stay silent
- Collisions on the RTS/CTS are still possible, but less likely

MACA – Hidden Terminals

- $A \rightarrow B$ with hidden terminal C
 - 1. A sends RTS, to B

MACA – Hidden Terminals (2)

- $A \rightarrow B$ with hidden terminal C
 - 2. B sends CTS to A, and C overhears

MACA – Hidden Terminals (3)

- $A \rightarrow B$ with hidden terminal C
 - 3. A sends frame while C defers

MACA – Exposed Terminals

• $B \rightarrow A, C \rightarrow D$ as exposed terminals

• B and C send RTS to A and D

MACA – Exposed Terminals (2)

• $B \rightarrow A, C \rightarrow D$ as exposed terminals

• A and D send CTS to B and C

MACA – Exposed Terminals (3)

• $B \rightarrow A, C \rightarrow D$ as exposed terminals

• A and D send CTS to B and C

802.11, or WiFi

- Very popular wireless LAN started in the 1990s
- Clients get connectivity from a (wired) AP (Access Point)
- It's a multi-access problem 😳
- Various flavors have been developed over time
 - Faster, more features

802.11 Physical Layer

- Uses 20/40 MHz channels on ISM (unlicensed) bands
 - 802.11b/g/n on 2.4 GHz
 - 802.11 a/n on 5 GHz
- OFDM modulation (except legacy 802.11b)
 - Different amplitudes/phases for varying SNRs
 - Rates from 6 to 54 Mbps plus error correction
 - 802.11n uses multiple antennas
 - Lots of fun tricks here

802.11 Link Layer

- Multiple access uses CSMA/CA (next); RTS/CTS optional
- Frames are ACKed and retransmitted with ARQ
- Funky addressing (three addresses!) due to AP
- Errors are detected with a 32-bit CRC
- Many, many features (e.g., encryption, power save)

Packet from Network layer (IP)

Centralized MAC: Cellular

- Spectrum suddenly very scarce
 - We can't waste all of it sending JAMs
- We have QoS requirements
 - Can't be as loose with expectations
 - Can't have traffic fail
- We also have client/server
 - Centralized control
 - Not peer-to-peer/decentralized

GSM MAC

- FDMA/TDMA
- Use one channel for coordination Random access w/BEB (no CSMA, can't detect)
- Use other channels for traffic
 - Dedicated channel for QoS

Nedlink (Basestasjon->Mobiltelefon)

Recap: MAC layer ideas

- Random wait times upon collisions
- Carrier sense
 - Persistence
- Collision detection
- Binary exponential backoff
- RTS-CTS for hidden and exposed terminals

Link Layer: Switching

CSE 461 University of Washington

Switching

- How do we connect nodes with a <u>switch</u> instead of multiple access
 - Uses multiple links/wires
 - Basis of modern (switched) Ethernet

CSE 461 University of Washington

Switched Ethernet

- Hosts are wired to Ethernet switches with twisted pair
 - Switch serves to connect the hosts
 - Wires usually run to a closet

What's in the box?

• Remember from protocol layers:

Inside a Hub

• All ports are wired together; more convenient and reliable than a single shared wire

CSE 461 University of Washington

Inside a Repeater

 All inputs are connected; then amplified before going out

CSE 461 University of Washington

Inside a Switch

 Uses frame addresses (MAC addresses in Ethernet) to connect input port to the right output port; multiple frames may be switched in parallel

Inside a Switch (2)

- Port may be used for both input and output (fullduplex)
 - Just send, no multiple access protocol

Inside a Switch (3)

Need buffers for multiple inputs to send to one output

Inside a Switch (4)

• Sustained overload will fill buffer and lead to frame loss

Advantages of Switches

- Switches and hubs (mostly switches) have replaced the shared cable of classic Ethernet
 - Convenient to run wires to one location
 - More reliable; wire cut is not a single point of failure that is hard to find
- Switches offer scalable performance
 - E.g., 100 Mbps per port instead of 100 Mbps for all nodes of shared cable / hub