
Error Correction

Why Error Correction is Harder

If we had reliable check bits we could use them to
narrow down the position of the error
• Then correction would be easy

But error could be in the check bits as well as the
data bits
• Data might even be correct!

CSE 461 University of Washington

Intuition for Error Correcting Code

Assume a code with a Hamming distance of at least 3
• Need ≥3 bit errors to change a valid codeword into another
• Single bit errors will be closest to a unique valid codeword

If we assume errors are only 1 bit, we can correct
mapping an error to the closest valid codeword
•Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington

Intuition (2)

CSE 461 University of Washington

A

B

Valid
codeword

Error
codeword

Intuition (3)

CSE 461 University of Washington

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Hamming Code

Method for constructing a code with a distance of 3
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting

with position 1
• N-th check bit is parity of bit positions with n-th LSBit is

same as p’s

Plus an easy way to correct [soon]

CSE 461 University of Washington

Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
• Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
• Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)

CSE 461 University of Washington

_ _ _ _ _ _ _
1 2 3 4 5 6 7

Cheat sheet
1: 0001
2: 0010
3: 0011
4: 0100
5: 0101
6: 0110
7: 0111

0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0

Hamming Code (3)

•To decode:
• Recompute check bits (with parity sum including the

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington

Hamming Code (5)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 0 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (6)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

Hamming Code (7)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (8)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

Hamming Code (9)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Hamming Code (10)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Other Error Correction Codes

•Real codes are more involved than Hamming
•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
•Makes each output bit less fragile
• Decode using Viterbi algorithm (uses bit confidence values)

CSE 461 University of Washington

Detection vs. Correction

Example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

Which is better will depend on the pattern of errors

CSE 461 University of Washington

Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need ~10 check bits per message
• Overhead:

• 10 bits per message

Error detection:
• Need ~1 check bits per message plus 1000 bit retransmission
• Overhead:

• 101 bits per message

CSE 461 University of Washington

Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead:

• >> 100 bpm

Error detection:
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead:

• 34 bits per message

CSE 461 University of Washington

Detection vs. Correction (4)

• Error correction:
• Needed when errors are expected
• Or when no time for retransmission

• Error detection:
• More efficient when errors are not expected
• And when errors are large when they do occur

CSE 461 University of Washington

Error Correction in Practice

• Heavily used in physical layer
• Used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above
for residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington

Error Correction in Practice (2)

•Everywhere! It is a key issue
• Different layers contribute differently

CSE 461 University of Washington

Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application

