
HTTP



HTTP: HyperText Transfer Protocol

•Basis for fetching Web pages

request
Network



Sir Tim Berners-Lee (1955–) 

• Inventor of the Web
• Dominant Internet app since mid 90s
• He now directs the W3C

•Developed Web at CERN in ‘89
• Browser, server and first HTTP
• Popularized via Mosaic (‘93), Netscape
• First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons



Web Context 

HTTP request

HTTP response

Page as a set of related 
HTTP transactions

Hyperlink



Web Protocol Context

•HTTP is a request/response protocol 
• Runs on TCP, typically port 80
• Part of browser/server app

TCP
IP

802.11

browser

HTTP
TCP
IP

802.11

server

HTTP
request

response



Fetching a Web page with HTTP

• Start with the page URL (Uniform Resource Locator):
http://en.wikipedia.org/wiki/Vegemite

• Steps:
1. Resolve the server to IP address (DNS)
2. Set up TCP connection to the server
3. Send HTTP request for the page
4. Await HTTP response for the page
5. Execute and fetch embedded resources, render
6. Clean up any idle TCP connections

Protocol Page on serverServer



HTML

• Hypertext Markup Language (HTML)
• Uses Extensible Markup Language (XML) to build a 

markup language for web content

• Key innovation was the “hyperlink”, an element 
linking to other HTML elements using URLs

• Also includes Cascading Style Sheets (CSS) for 
maintaining look-and-feel across a domain

• “Browser wars” over specific standards



DOM (Document Object Model)

•Base primitive for HTML browsers

•Use HTML to create a tree of elements

•Embedded Javascript modifies 
the DOM based on:
• User actions
• Asynchronous Javascript
•Other server-side actions



Lets explore a page

• https://www.cs.washington.edu/

https://www.cs.washington.edu/


Static vs Dynamic Web pages

•Static: Just static files, e.g., image
•Dynamic: Page content based on some computation 
• Javascript on client, PHP on server, or both 



HTTP Protocol

•Originally simple; many options added over time
• Text-based commands, headers

•Try it yourself: As a “browser” fetching a URL
• Run “telnet <server name> 80”
• Enter “GET /index.html HTTP/1.0”
• Server will return HTTP response



HTTP Protocol (2)

•Commands used in the request
Method Description

GET Read a Web page
HEAD Read a Web page's header
POST Append to a Web page
PUT Store a Web page
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT Connect through a proxy
OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct



HTTP Protocol (3)

•Codes returned with the response
Code Meaning Examples
1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content 
present

3xx Redirection 301 = page moved; 304 = cached page still valid
4xx Client error 403 = forbidden page; 404 = page not found
5xx Server error 500 = internal server error; 503 = try again later

Yes!



Performance



PLT (Page Load Time)

•PLT is a key measure of web performance 
• From click until user sees page
• Small increases in PLT decrease sales

•PLT depends on many factors
• Structure of page/content
• HTTP (and TCP!) protocol
• Network RTT and bandwidth



Early Performance

•HTTP/1.0 used one TCP connection 
per web resource
•Made HTTP very easy to build
• But gave fairly poor PLT…



Reasons for Poor PLT

• Sequential request/responses, even 
when to different servers
•Multiple TCP connection setups to the 

same server
•Multiple TCP slow-start phases

•Network is not used effectively
•Worse with many small resources



Ways to Improve PLT

1. Reduce content size for transfer
• Smaller images, gzip

2. Make better use of the network
• Next

3. Avoid fetching same content
• Caching and proxies [later]

4. Move content closer to client
• CDNs [later later]



Better Network Use: Parallel Connections

•Browser runs multiple (say, 8) parallel HTTP instances
• Server is unchanged; already handled concurrent requests 

for many clients
•How does this help?
• Single HTTP wasn’t using network much …
• So parallel connections aren’t slowed much
• Pulls in completion time of last fetch



Better Network Use: Persistent Connections

•Parallel connections compete with each other for 
network resources
• 1 parallel client ≈ 8 sequential clients?
• Exacerbates network bursts, and loss

•Persistent connections
•Make 1 TCP connection to 1 server
• Use it for multiple HTTP requests



Persistent Connections

One request per connection

Persistent 
connections

Persistent 
connections + 

pipelining



Persistent Connections (2)

•Widely used as part of HTTP/1.1
• Supports optional pipelining
• PLT benefits depending on page structure, but easy on 

network

But we didn’t stop there ….



Web Caching and Proxies



Web Caching

•Users often revisit web pages
• Big win from reusing local copy, aka, caching

•Key question:
•When is it OK to reuse local copy?

NetworkCache

Local copies

Server



Locally Determine Validity of Cached Content

•Based on expiry information such as “Expires” header

•Or a heuristic (cacheable, fresh, not modified recently) 

•Content is then available right away

NetworkCache
Server



Use Server to Validate Cached Content

•Based on “Last-Modified” header from server

•Or based on “Etag” header from server

•Content is available after 1 RTT (if connection open)

NetworkCache
Server



Web Caching: Putting it together



Web Proxies

•Place intermediary between clients and servers

•Benefits for clients include a shared cache
• Limited by secure / dynamic content
• Also limited by “long tail”

•Organizational access policies too!



Web Proxies in Action

• Clients contact proxy; proxy contacts server

Cache

Near client
Far from client



CDNs



Content Delivery Networks

•As the Web took off, traffic volumes grew and grew. 
1. Concentrated load on popular servers
2. Led to congested networks
3. Gave a poor user experience

• Idea:
• Place popular content near clients
• Helps with all three issues above



Before CDNs

•Sending content from the source server to 4 users 
takes 4 x 3 = 12 “network hops” in the example

Source

User

User

. . .



After CDNs

•Sending content via replicas takes only 4 + 2 = 6 
“network hops”

Source

User

User

. . .
Replica



After CDNs (2)

•Benefits assuming popular content:
• Reduces source server, network load
• Improves user experience

Source

User

User

. . .
Replica



Popularity of Content
•Zipf’s Law: few popular items, many 

unpopular ones; both matter

Zipf popularity
(kth item is 1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)



How to place content near clients? 

• Idea 1: Use browser and proxy caches
• Helps, but limited to one client or clients in one 

organization
•Want to place replicas across the Internet for use by all 

nearby clients
• Idea 2: Map clients to a nearby replica
• Done via clever use of DNS



Content Delivery Network



Content Delivery Network (2)

•DNS gives different answers to clients
• Tell each client the nearest replica (map client IP)



Transit 
ISP

Business Model

•Clever model pioneered by Akamai
• Placing site replica at an ISP is win-win
• Improves site experience and reduces ISP bandwidth usage

Source ISP
User

User

. . .
Replica



CDNs Issues

•Performance: How accurate can the IP map be?

•Dynamic pages: What about dynamic content?

•Security: How to cache/forward encrypted content?

•Privacy: What about private information?


