Applications

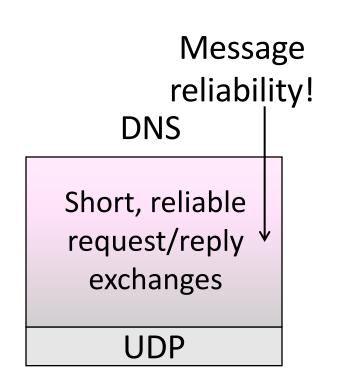
Remember this?

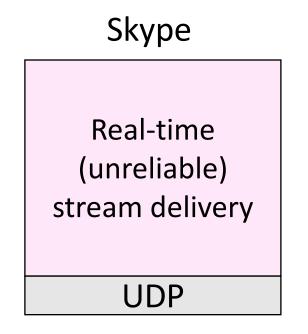
Application

Transport

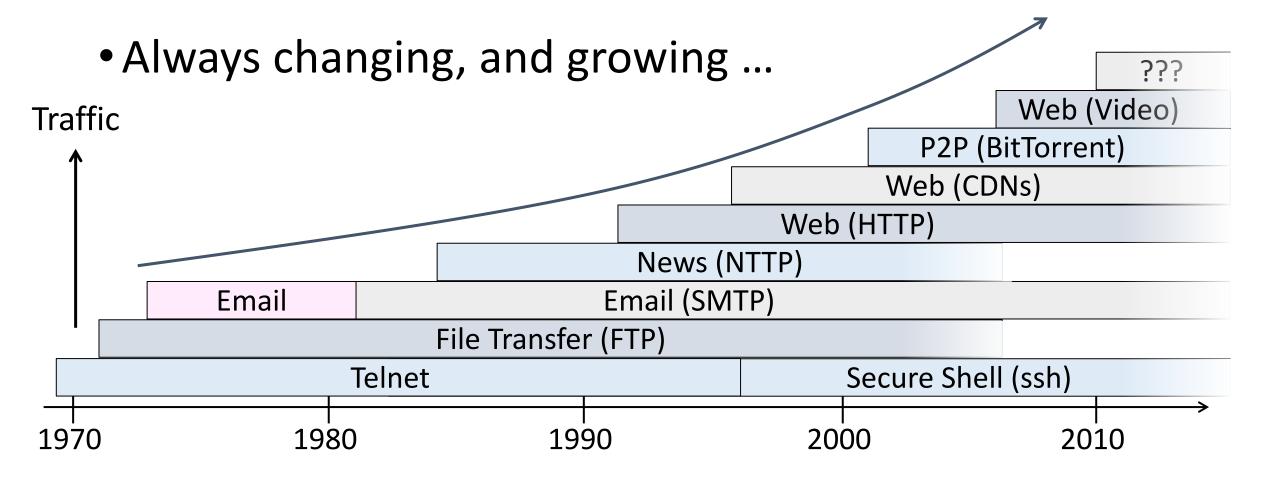
Network

Link

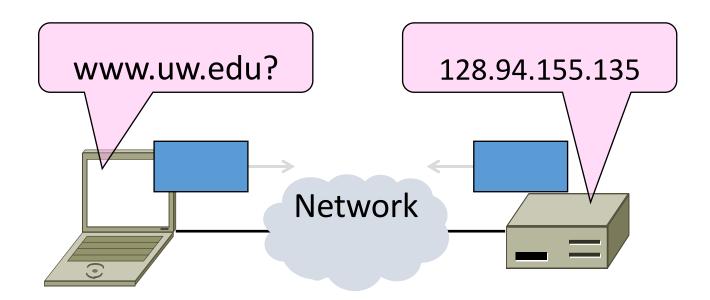

Physical


Application Communication Needs

 Vary widely; build on Transport services; some use multiple transport protocols (e.g., Zoom)


Series of variable length, reliable request/reply exchanges

Web


Evolution of Internet Applications

Domain Name System

DNS

• Human-readable host names, and more

Names and Addresses

- Names are higher-level identifiers for resources
- Addresses are lower-level locators for resources
 - Multiple levels, e.g. full name → email → IP address → Ethernet addr
- Resolution (or lookup) is mapping a name to an address

Name, e.g.

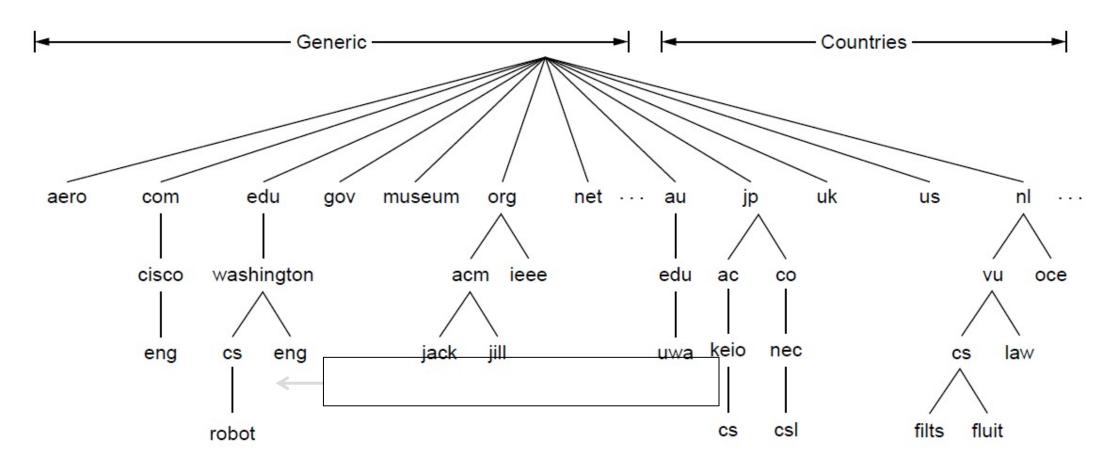
"Joe Biden,"
or "whitehouse.gov"

Directory

Address, e.g.

"1600 Pennsylvania Ave, DC"
or IPv4 "184.24.56.92"

Before the DNS — HOSTS.TXT

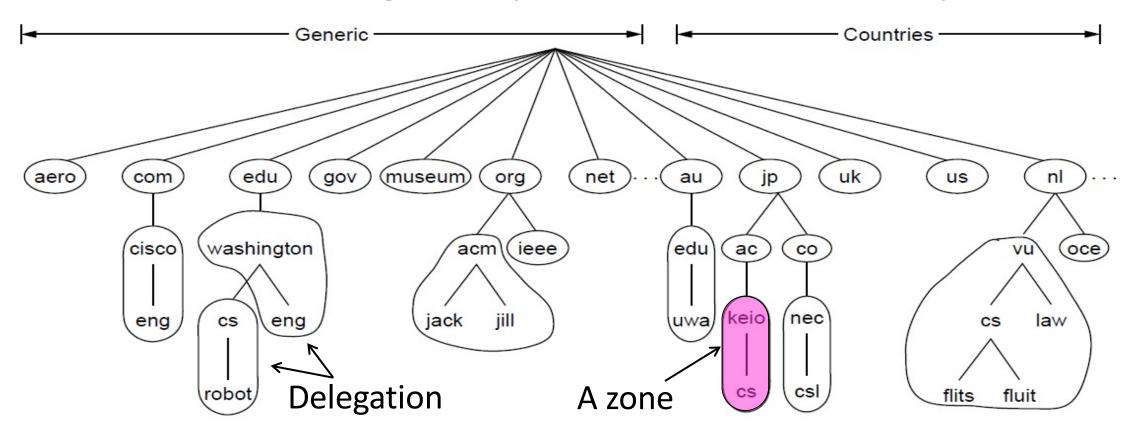

- Directory was a file HOSTS.TXT regularly retrieved for all hosts from a central machine at the NIC (Network Information Center)
- Names were initially flat, became hierarchical (e.g., lcs.mit.edu) ~85
- Not manageable or efficient as the ARPANET grew ...

DNS

- A naming service to map between host names and their IP addresses (and more)
 - www.uwa.edu.au > 130.95.128.140
- Goals:
 - Easy to manage (esp. with multiple parties)
 - Efficient (good performance, few resources)
- Approach:
 - Distributed directory based on a hierarchical namespace
 - Automated protocol to tie pieces together

DNS Namespace

Hierarchical, starting from "." (dot, typically omitted)



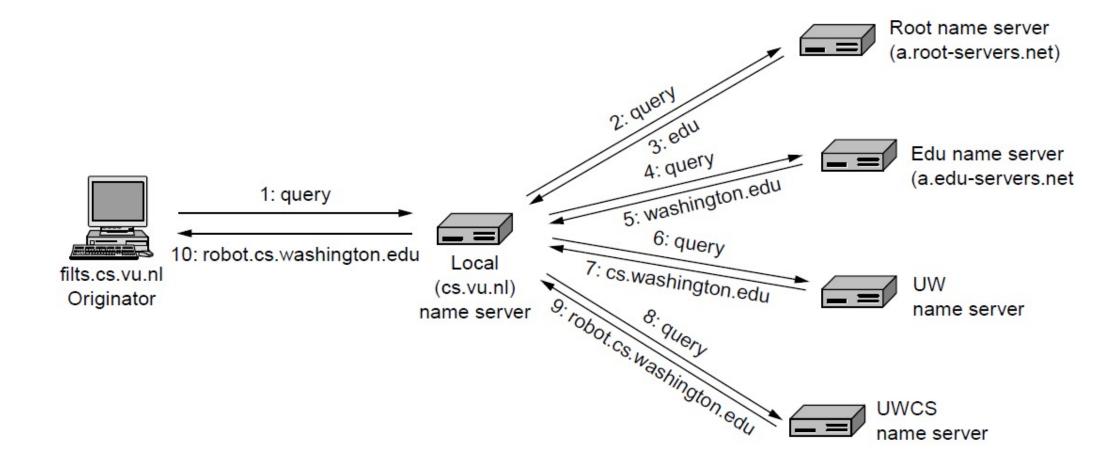
TLDs (Top-Level Domains)

- Run by ICANN (Internet Corp. for Assigned Names and Numbers)
 - Starting in '98; naming is financial, political, and international ©
- 700+ generic TLDs
 - Initially .com, .edu , .gov., .mil, .org, .net
 - Unrestricted (.com) vs Restricted (.edu)
 - Added regions (.asia, .kiwi), Brands (.apple), Sponsored (.aero) in 2012
- ~250 country code TLDs
 - Two letters, e.g., ".au", plus international characters since 2010
 - Widely commercialized, e.g., .tv (Tuvalu)
 - Many domain hacks, e.g., instagr.am (Armenia)

DNS Zones

• A zone is a contiguous portion of the namespace

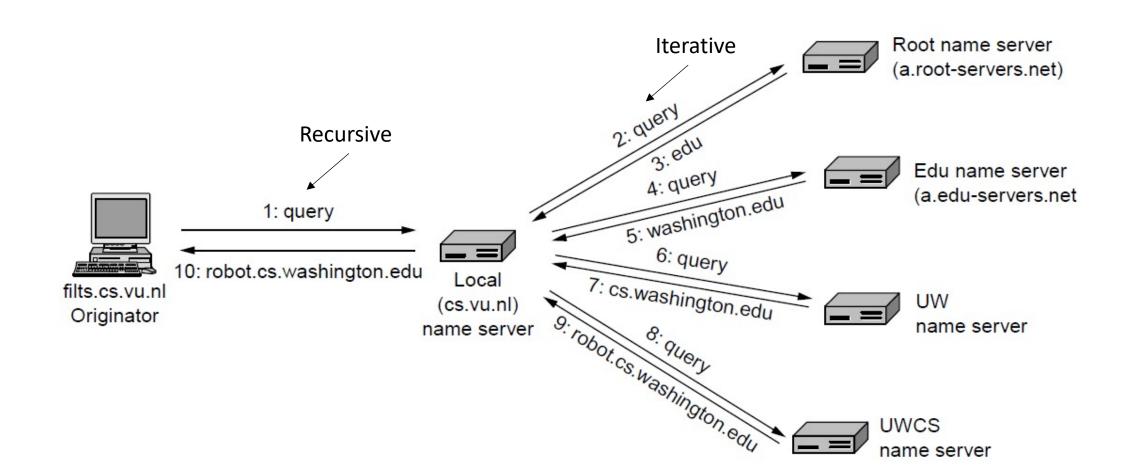
DNS Zones (2)


- Zones are the basis for distribution
 - EDU Registrar administers .edu
 - UW administers washington.edu
 - CSE administers cs.washington.edu
- Each zone has a <u>nameserver</u> to contact for information about it
 - Zone must include contacts for delegations, e.g., .edu knows nameserver for washington.edu

DNS Resolution

- DNS protocol lets a host resolve any host name (domain) to IP address
- If unknown, can start with the root nameserver and work down zones
- Let's see an example first ...

DNS Resolution (2)


• flits.cs.vu.nl resolves robot.cs.washington.edu

Iterative vs. Recursive Queries

- Recursive query
 - Nameserver resolves and returns final answer
 - E.g., flits → local nameserver
- Iterative (Authoritative) query
 - Nameserver returns answer or who to contact for answer
 - E.g., local nameserver → all others

Iterative vs. Recursive Queries (2)

Iterative vs. Recursive Queries (3)

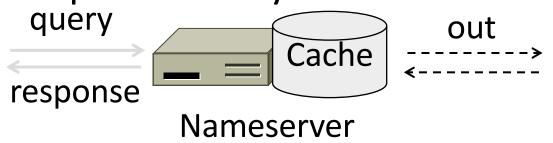
- Recursive query
 - Servers can offload client burden
 - Servers can cache results for a pool of clients
- Iterative query
 - Server can "file and forget"
 - Easy to build high load servers

Local Nameservers

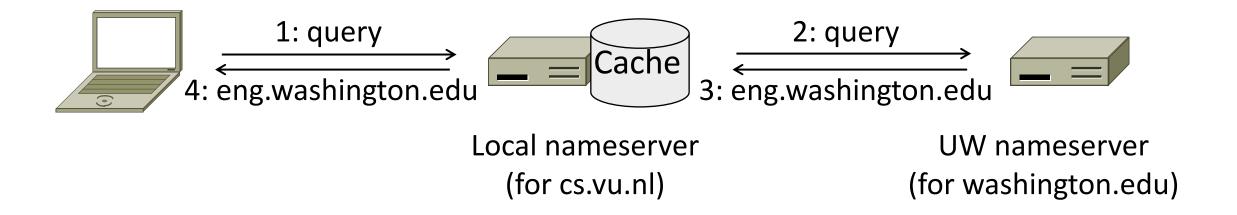
- Local nameservers often run by IT (enterprise, ISP)
 - But may be your host or AP
 - Or alternatives e.g., Google public DNS (8.8.8.8) Cloudflare's public DNS (1.1.1.1)
- Clients need to be able to contact local nameservers
 - Typically configured via DHCP

Root Nameservers

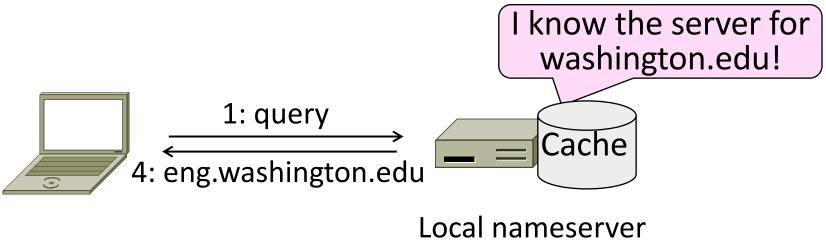
- Root (dot) is served by 13 server names
 - a.root-servers.net to m.root-servers.net
 - All nameservers need root IP addresses
 - Handled via configuration file (named.ca)
- There are >250 distributed server instances
 - Highly reachable, reliable service
 - Most servers are reached by <u>IP anycast</u> (Multiple locations advertise same IP! Routes take client to the closest one.)
 - Servers are IPv4 and IPv6 reachable


Root Server Deployment

As of 04/30/2021 5:56 a.m., the root server system consists of 1378 instances operated by the 12 independent root server operators.


Caching

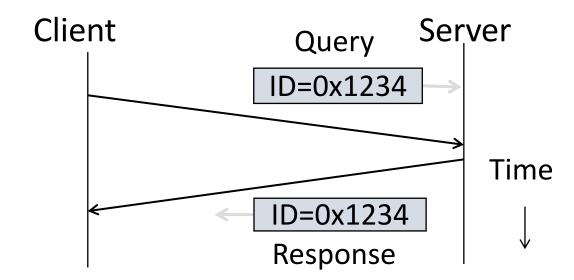
- Goal: Low resolution latency
- Observation: Names don't have much churn
- Cache query/responses to answer future queries immediately
 - Including partial (iterative) answers
 - Responses carry a TTL for caching


Caching (2)

• flits.cs.vu.nl looks up and stores eng.washington.edu

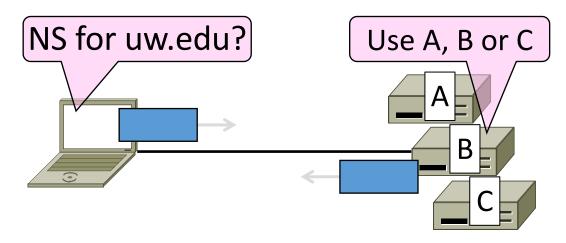
Caching (3)

 flits.cs.vu.nl now directly resolves eng.washington.edu



(for cs.vu.nl)

UW nameserver (for washington.edu)


DNS Protocol

- Query and response messages
 - Built on UDP messages, port 53
 - ARQ for reliability; server is stateless!
 - Messages linked by a 16-bit ID field

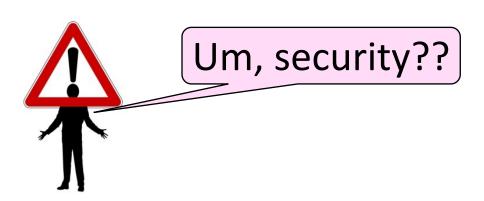
DNS Protocol (2)

- Service reliability via replicas
 - Run multiple nameservers for domain
 - Return the list; clients use one answer
 - Helps distribute load too

DNS Resource Records

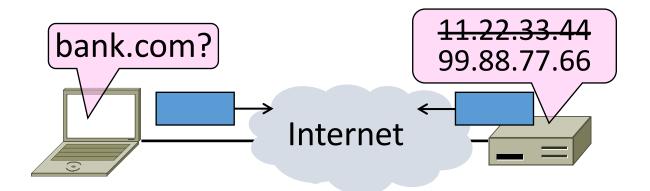
 A zone is comprised of DNS resource records that give information for its domain names

Type	Meaning		
SOA	Start of authority, has key zone parameters		
Α	IPv4 address of a host		
AAAA ("quad A")	IPv6 address of a host		
CNAME	Canonical name for an alias		
MX	Mail exchanger for the domain		
NS	Nameserver of domain or delegated subdomain		

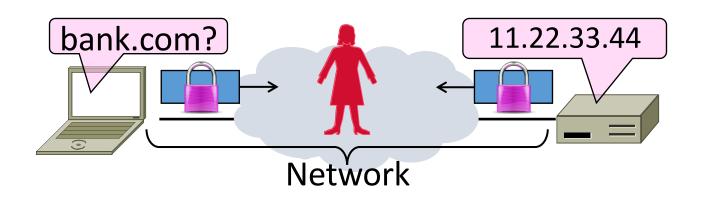

DNS Resource Records (2)

; Authoritative da	ta for cs.v	u.nl				
cs.vu.nl.	86400	IN	SOA	star boss (9527,720)	0,7200,241920,86400)	Start of Authority
cs.vu.nl.	86400	IN	MX	1 zephyr		•
cs.vu.nl.	86400	IN	MX	2 top		
cs.vu.nl.	86400	IN	NS	star	– Name server	
star	86400	IN	A	130.37.56.205		
zephyr	86400	IN	A	130.37.20.10	_IP addresses	
top	86400	IN	A	130.37.20.11	_ir addresses	
www	86400	IN	CNAME	star.cs.vu.nl	of computers	
ftp	86400	IN	CNAME	zephyr.cs.vu.nl	or compaters	
fl:t-	06400	INI	Λ.	120 27 46 442		
flits	86400		A	130.37.16.112		
flits	86400		A	192.31.231.165		
flits	86400	IN	MX	1 flits		
flits	86400	IN	MX	2 zephyr		
flits	86400	IN	MX	3 top		
rowboat		IN	Α	130.37.56.201		
		IN	MX	1 rowboat	5 <i>a</i> • 1 .	
		IN	MX	2 zephyr	Mail gateways	
little-sister		IN	Α	130.37.62.23		
		1000	(5.050)			
laserjet		IN	A	192.31.231.216		

DIG DEMO


DNS Security

- Security is a major issue
 - Compromise redirects to wrong site!
 - Not part of initial protocols ...
- DNSSEC (DNS Security Extensions)
 - Mostly deployed

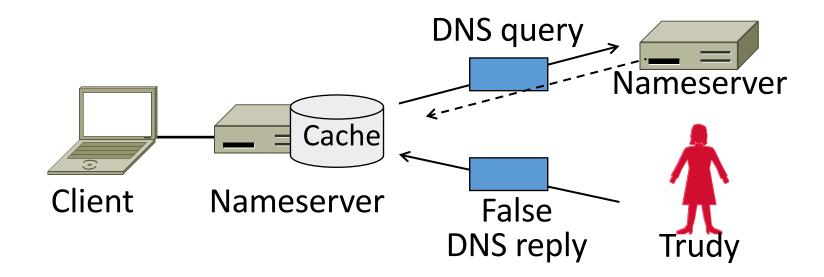

Goal and Threat Model

- Naming is a crucial Internet service
 - Binds host name to IP address
 - Wrong binding can be disastrous...

Goal and Threat Model (2)

- Goal is to secure the DNS so that the returned binding is correct
 - Integrity vs confidentiality
- Attacker can tamper with messages on the network

DNS Spoofing


Hang on – how can attacker corrupt the DNS?

DNS Spoofing

- Hang on how can attacker corrupt the DNS?
- Can trick nameserver into caching the wrong binding
 - By using the DNS protocol itself
 - This is called <u>DNS spoofing</u>

DNS Spoofing (2)

- To spoof, Trudy returns a fake DNS response that appears to be true
 - Fake response contains bad binding

DNS Spoofing (3)

- Lots of questions!
 - 1. How does Trudy know when the DNS query is sent and what it is for?
 - 2. How can Trudy supply a fake DNS reply that appears to be real?
 - 3. What happens when the real DNS reply shows up?
- There are solutions to each issue ...

DNS Spoofing (4)

1. How does Trudy know when the query is sent and what it is for?

DNS Spoofing (5)

- 1. How does Trudy know when the query is sent and what it is for?
- Trudy can make the query herself!
 - Nameserver works for many clients
 - Trudy is just another client

DNS Spoofing (6)

2. How can Trudy supply a fake DNS reply that appears to be real?

DNS Spoofing (7)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- A bit more difficult. DNS checks:
 - Reply is from authoritative nameserver (e.g., .com)
 - Reply ID that matches the request
 - Reply is for outstanding query
- (Nothing about content though ...)

DNS Spoofing (8)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- Example Technique:
 - 1. Put IP of authoritative nameserver as the source IP ID is 16 bits (64K)
 - 2. Send reply right after query
 - 3. Send many guesses! (Or if a counter, sample to predict.)
- Good chance of succeeding!

DNS Spoofing (8)

3. What happens when real DNS reply shows up?

DNS Spoofing (9)

- 3. What happens when real DNS reply shows up?
- Likely not be a problem
 - There is no outstanding query after fake reply is accepted
 - So real reply will be discarded

DNSSEC (DNS Security Extensions)

- Extends DNS with new record types
 - RRSIG for digital signatures of records
 - DNSKEY for public keys for validation
 - DS for public keys for delegation
 - First version in '97, revised by '05
- Deployment requires software upgrade at both client and server
 - Root servers upgraded in 2010
 - Followed by uptick in deployment