Finding "Best" Paths

What are "Best" paths anyhow?

- Many possibilities:
- Latency, avoid circuitous paths
- Bandwidth, avoid slow links
- Money, avoid expensive links
- Hops, to reduce switching
- But only consider topology
- Ignore workload, e.g., hotspots

Shortest Paths

We'll approximate "best" by a cost function that captures the factors

- Often called "least cost" or "shortest"

1. Assign each link a cost (distance)
2. Define best path between each pair of nodes as the path that has the least total cost
3. Pick randomly to any break ties

Shortest Paths (2)

- Find the shortest path $\mathrm{A} \rightarrow \mathrm{E}$
- All links are bidirectional, with equal costs in each direction
- Can extend model to unequal costs if needed

Shortest Paths (3)

- ABCE is a shortest path
- $\operatorname{cost}(\mathrm{ABCE})=4+2+1=7$
- It is shorter than:
- $\operatorname{cost}(\mathrm{ABE})=8$
- $\operatorname{cost}(A B F E)=9$
- $\operatorname{cost}(\mathrm{AE})=10$
- $\operatorname{cost}(\mathrm{ABCDE})=10$

Shortest Paths (4)

- Optimality property:
- Subpaths of shortest paths are also shortest paths
- ABCE is a shortest path \rightarrow So are $A B C, A B, B C E, B C, C E$

Sink Trees

- Sink tree for a destination is the union of all shortest paths towards the destination
- Similarly source tree
- Find the sink tree for E

Sink Trees (2)

- Implications:
- Only need to use destination to follow shortest paths
- Each node only need to send to the next hop
- Forwarding table at a node
- Lists next hop for each destination
- Routing table may know more

Routing recap

Routing goal: Find shortest or least cost paths

Shortest paths have the subset optimality property

Today: Computing shortest paths in a fully distributed manner

Distance Vector Routing

Distance Vector Routing

- Simple, early routing approach
- Used in ARPANET, and RIP
- One of two main approaches to routing
- Distributed version of Bellman-Ford
- Works, but very slow convergence after some failures
- Link-state algorithms are now typically used in practice
- More involved, better behavior

Distance Vector Setting

Each node computes its forwarding table in a distributed setting:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost

Distance Vector Algorithm

Each node maintains a vector of (distance, next hop) to all destinations

1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the shortest distance heard, after adding cost of neighbor link
4. Use the best neighbor for forwarding

Distance Vector (2)

- Consider from the point of view of node A
- Can only talk to nodes B and E
Initial

vector \rightarrow| To | Cost |
| :---: | :---: |
| A | 0 |
| B | ∞ |
| C | ∞ |
| D | ∞ |
| E | ∞ |
| F | ∞ |
| G | ∞ |
| H | ∞ |

Distance Vector (3)

- First exchange with B, E; learn best 1-hop routes

10	says	says	$\begin{aligned} & B \\ & +4 \end{aligned}$	+10	$\begin{gathered} A^{\prime} S \\ \text { COSt } \end{gathered}$	$\begin{aligned} & \text { A's } \\ & \text { Next } \end{aligned}$
A	∞	∞	∞	∞	0	--
B	0	∞	4	∞	4	B
C	∞	∞	∞	∞	∞	--
D	∞	∞	∞	∞	∞	--
E	∞	0	∞	10	10	E
F	∞	∞	∞	∞	∞	-
G	∞	∞	∞	∞	∞	--
H	∞	∞	∞	∞	∞	--

Distance Vector (4)

- Second exchange; learn best 2-hop routes

To	B says	E says			
A	4	10			
B	0	4			
C	2	1			
D	∞	2			
E	4	0			
F	3	2			
G	3	∞			
H	∞	∞	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	20				
4	14				
6	11				
∞	12				
8	10				
7	12				
7	∞				
∞	∞	\quad	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
12	E				
8	B				
7	B				
7	B				
∞	--				

Distance Vector (4)

- Third exchange; learn best 3-hop routes F_{F}

To	B says	E says			
A	4	8			
B	0	3			
C	2	1			
D	4	2			
E	3	0			
F	3	2			
G	3	6			
H	5	4	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	18				
4	13				
6	11				
8	12				
7	10				
7	12				
7	16				
9	14	\quad	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
8	B				
7	B				
7	B				
7	B				
9	B				

Distance Vector (5)

- Subsequent exchanges; converged

Distance Vector Dynamics

- Adding routes:
- News travels one hop per exchange
- Removing routes:
- When a node fails, no more exchanges, other nodes forget Problem?

Count to Infinity: Problem

- Good news travels quickly, bad news slowly

Desired convergence

"Count to infinity" scenario

Count to Infinity: Heuristics

-"Split horizon"

- Don't send route back to where you learned it from.
- Poison reverse
- Send "infinity" when you notice a disconnect

Count to Infinity: Heuristics (2)

- Neither split horizon and poison reverse are very effective in practice
- Link state is now favored except when resource-limited

RIP (Routing Information Protocol)

- DV protocol with hop count as metric
- Infinity is 16 hops; limits network size
- Includes split horizon, poison reverse
- Routers send vectors every 30 seconds
- Runs on top of UDP
- Time-out in 180 secs to detect failures
- RIPv1 specified in RFC1058 (1988)

Link-State Routing

Link-State Routing

- Second broad class of routing algorithms
- More computation than DV but better dynamics
-Widely used in practice
- Used in Internet/ARPANET from 1979
- Modern networks use OSPF (L3) and IS-IS (L2)

Link-State Setting

Same distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes/links may fail, messages may be lost

Link-State Algorithm

Proceeds in two phases:

1. Nodes flood topology with link state packets

- Each node learns full topology

2. Each node computes its own forwarding table

- By running Dijkstra (or equivalent)

Part 1: Flooding

Flooding

- Rule used at each node:
- Sends an incoming message on to all other neighbors
- Remember the message so that it is only flood once

Flooding (2)

- Consider a flood from A; first reaches B via $A B, E$ via AE

Flooding (3)

- Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, EF

Flooding (4)
-C floods CD, CH; D floods DC; F floods FG; G floods GF
F gets another copy

Flooding (5)

- H has no-one to flood ... and we're done

Flooding Details

- Remember message (to stop flood) using source and sequence number
- So next message (with higher sequence) will go through
- To make flooding reliable, use ARQ
- So receiver acknowledges, and sender resends if needed

Problem?

Flooding Problem

- F receives the same message multiple times

