
IPv6

CSE 461 University of Washington

IP Version 6 to the Rescue

- Effort started by the IETF in 1994
 - Much larger addresses (128 bits)
 - Many sundry improvements
- Became an IETF standard in 1998
 - Nothing much happened for a decade
 - Hampered by deployment issues, and a lack of adoption incentives
 - Big push ~2011 as exhaustion looms

- Features large addresses
 128 bits, most of header
- New notation
 - 8 groups of 4 hex digits (16 bits)
 - Omit leading zeros, groups of zeros
 - Ex: 2001:0db8:0000:0000:0000:ff00:0042:8329
 - → 2001:db8::ff00:42:8329

IPv6 (2)

- Lots of other changes
 - Only public addresses
 - No more NAT!
 - Streamlined header processing
 - No checksum (why's that faster?)
 - Flow label to group of packets
 - IPSec by default

 Serv.
 Flow label

 Payload length
 Next header

 Hop limit

 Source address (16 bytes)

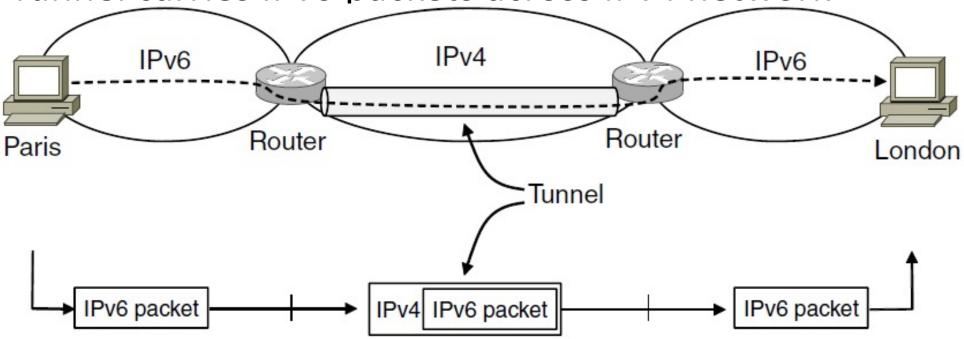
 Destination address (16 bytes)

 Better fit with "advanced" features (mobility, multicasting, security)

IPv6 Stateless Autoconfiguration (SLAAC)

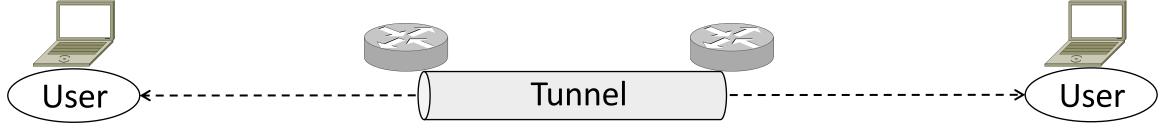
- Replaces DHCP (sorta...)
- Uses ICMPv6
- Process:
 - Send broadcast message
 - Get prefix from router
 - Attach MAC to router Prefix

Version	Diff. Serv.	Flow label	
	Payload length	Next header	Hop limit
		Source address	
		(16 bytes)	
-		Destination address (16 bytes)	

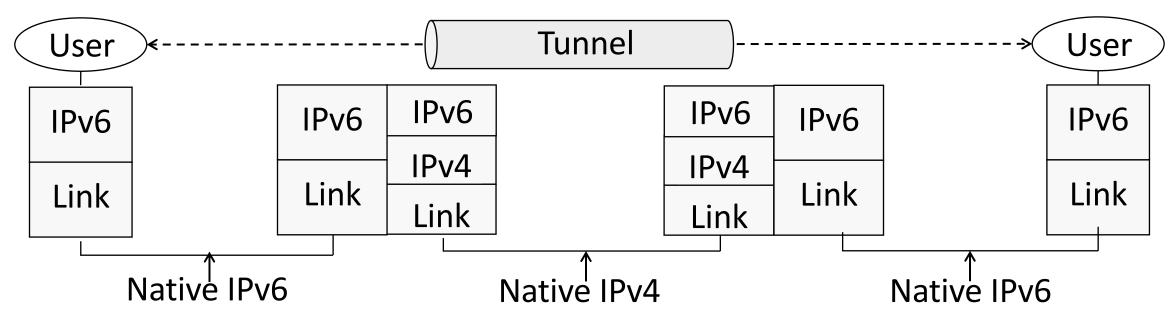

27 hitc

IPv6 Transition

- The Big Problem:
 - How to deploy IPv6?
 - Fundamentally incompatible with IPv4
- Dozens of approaches proposed
 - Dual stack (speak IPv4 and IPv6)
 - Translators (convert packets)
 - Tunnels (carry IPv6 over IPv4)

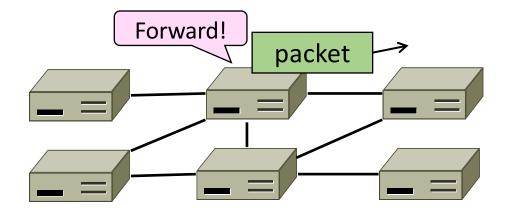

Tunneling

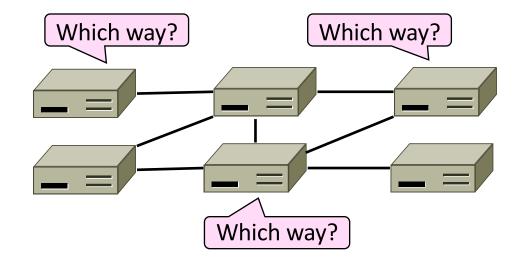
- Native IPv6 islands connected via IPv4
 - Tunnel carries IPv6 packets across IPv4 network


Tunneling (2)

• Tunnel acts as a single link across IPv4 network

Tunneling (3)


Tunnel acts as a single link across IPv4 network
Difficulty is to set up tunnel endpoints and routing


Routing and forwarding

Recap: Routing versus Forwarding

 Forwarding is the process of sending a packet on its way

• <u>Routing</u> is the process of deciding in which direction to send traffic

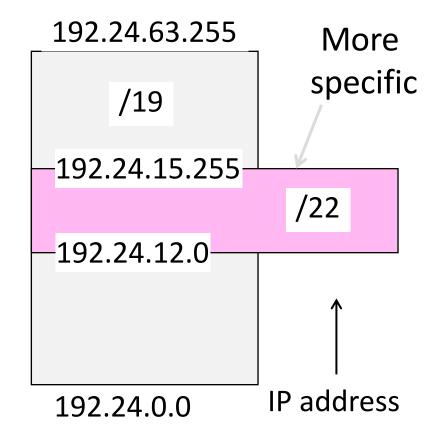
Overview of Internet Routing and Forwarding

- Hosts on same network have IPs in the same IP prefix
- Hosts send off-network traffic to the gateway router

- Routers discover routes to different prefixes (routing)
- Routers use <u>longest prefix matching</u> to send packets to the right next hop (forwarding)

Longest Prefix Matching

 Prefixes in the forwarding table can overlap


Prefix	Next Hop
0.0.0/0	А
192.24.0.0/19	В
192.24.12.0/22	С

- Longest prefix matching forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix

Longest Prefix Matching (2)

Prefix	Next Hop
192.24.0.0/19	D
192.24.12.0/22	В

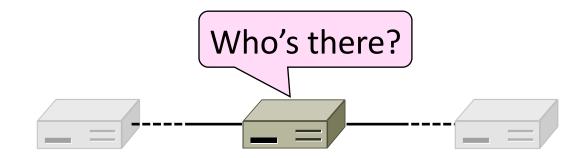
192.24.6.0
$$\rightarrow$$
 ?192.24.14.32 \rightarrow ?192.24.54.0 \rightarrow ?

Flexibility of Longest Prefix Matching

- Can provide default behavior, with less specifics
 - Send traffic going outside an organization to a border router (gateway)
- Can special case behavior, with more specifics
 - For performance, economics, security, ...

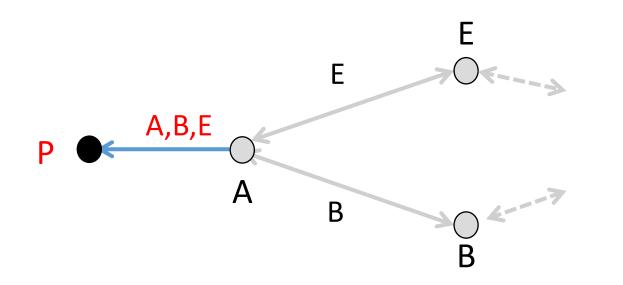
Performance of Longest Prefix Matching

- Uses hierarchy for a compact table
 Relies on use of large prefixes
- Lookup more complex than table
 - Used to be a concern for fast routers
 - Not an issue in practice these days


Goals of Routing Algorithms

• We want several properties of any routing scheme:

Property	Meaning	
Correctness	Finds paths that work	
Efficient paths	Uses network bandwidth well	
Fair paths	Doesn't starve any nodes	
Fast convergence	Recovers quickly after changes	
Scalability	Works well as network grows large	


Rules of Fully Distributed Routing

- All nodes are alike; no controller
- Nodes learn by exchanging messages with neighbors
- Nodes operate concurrently
- There may be node/link/message failures

Simple routing that obeys the rules

Send out routes for hosts you have paths to
And the routes they've sent you

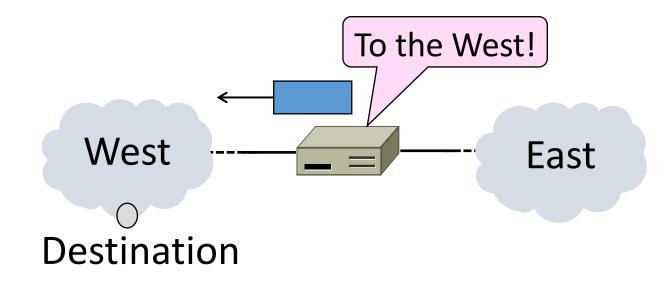
• This works

- All routers find a path to all hosts
- But scales poorly!

Recall: Internet Size

- Over 4 billion people
- 50B devices connect

Impact of Network Growth

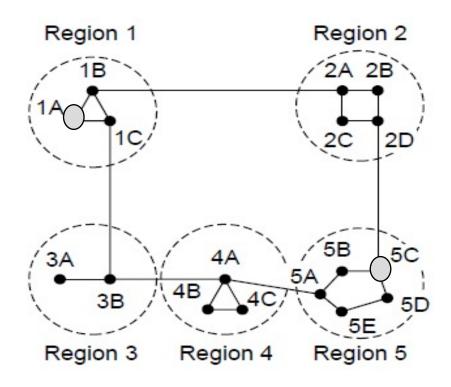

- 1. Forwarding tables grow
 - Larger router memories, may increase lookup time
- 2. Routing messages grow
 - Need to keeps all nodes informed of larger topology
- 3. Routing computation grows
 - Shortest path calculations grow faster than the network

Techniques to Scale Routing

- First: Network hierarchy
 - Route to network regions
- Next: IP prefix aggregation
 Combine, and split, prefixes

Scaling Idea 1: Hierarchical Routing

- Scale routing using hierarchy with regions
 - Route to regions, not individual nodes

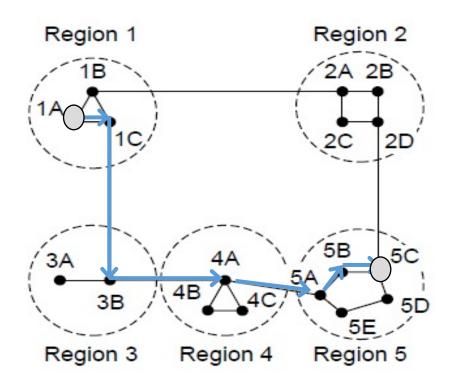


Hierarchical Routing

- Introduce a larger routing unit

 - Region, e.g., ISP network
- Route first to the region, then to the IP prefix within the region
 - Hide details within a region from outside of the region

Hierarchical Routing (2)


Full	table	for	1A
------	-------	-----	----

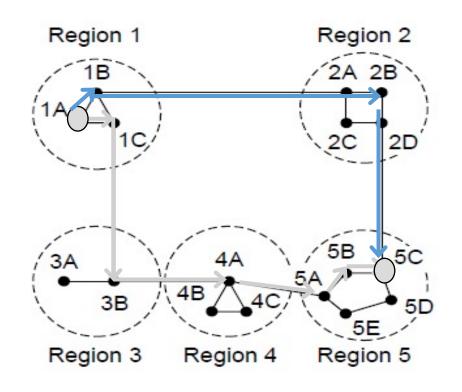
Dest.	Line	Hops
1A	Ι	-
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗA	1C	3
ЗB	1C	2
4A	1C	3
4 B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5

Hierarchical table for 1A

Dest.	Line	Hops
1 A	I	_
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

Hierarchical Routing (3)

Full table for 1A


Dest.	Line	Hops	
1A	Ι	-	
1B	1B	1	
1C	1C	1	
2A	1B	2	
2B	1B	3	
2C	1B	3	
2D	1B	4	
ЗA	1C	3	
3B	1C	2	
4A	1C	3	
4B	1C	4	
4C	1C	4	
5A	1C	4	
5B	1C	5	
5C	1B	5	
5D	1C	6	
5E	1C	5	

Hierarchical table for 1A

Dest.	Line	Hops
1A	-	_
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

Hierarchical Routing (4)

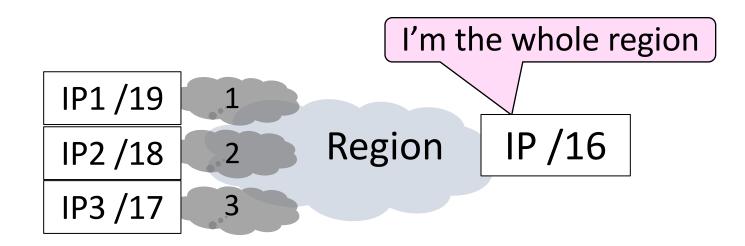
• Penalty is longer paths

Dest.	Line	Hops	
1A	Ι	-	
1B	1B	1	
1C	1C	1	
2A	1B	2	
2B	1B	3	
2C	1B	3	
2D	1B	4	
3A	1C	3	
3B	1C	2	
4A	1C	3	
4B	1C	4	
4C	1C	4	
5A	1C	4	
5B	1C	5	
5C	1B	5	
5D	1C	6	
5E	1C	5	

Full table for 1A

Hierarchical table for 1A

Dest.	Line	Hops
1A	_	-
1B	1B	1
1C	1C	1
2	1B	2
2	1C	2
4	1C	3
5	1C	4
_	1	

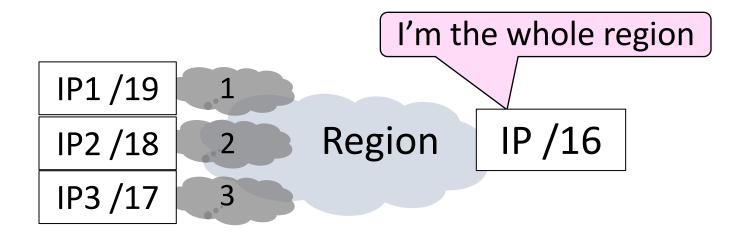

1C is best route to region 5, except for destination 5C

Observations

- Outside a region, nodes have <u>one route</u> to all hosts within the region
 - This gives savings in table size, messages and computation
- However, each node may have a <u>different route</u> to an outside region
 - Routing decisions are still made by individual nodes; there is no single decision made by a region

Scaling Idea 2: IP Prefix Aggregation and Subnets

Scale routing by adjusting the size of IP prefixes
Split (subnets) and join (aggregation)

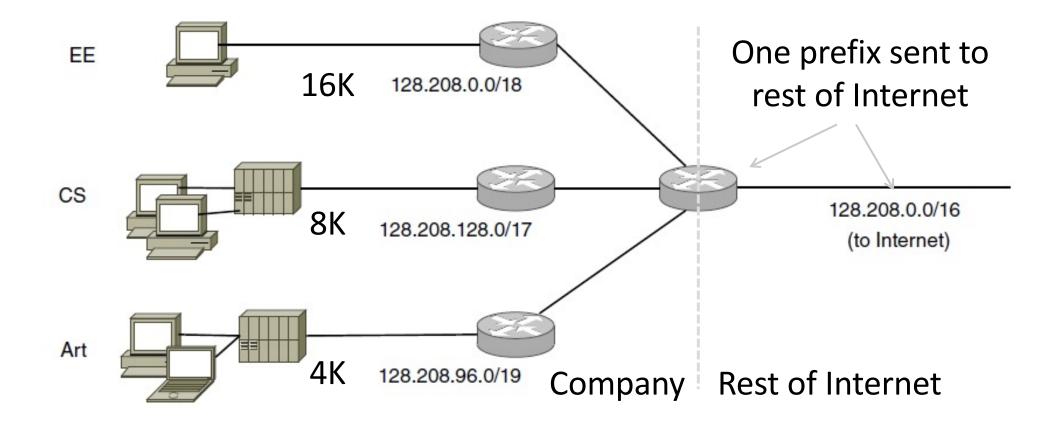

Recall

- IP addresses are allocated in blocks called IP prefixes, e.g., 18.31.0.0/16
 - Hosts on one network in same prefix
- "/N" prefix has the first N bits fixed and contains 2^{32-N} addresses
 - E.g., a "/24" has 256 addresses
- Routers keep track of prefix lengths
 - Use it as part of longest prefix matching

Routers can change prefix lengths without affecting hosts

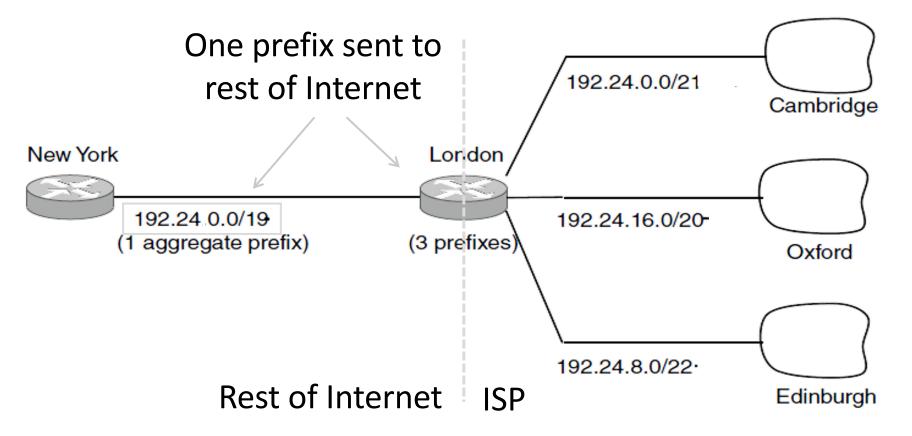
Prefixes and Hierarchy

IP prefixes help to scale routing, but can go further
Use a less specific (larger) IP prefix as a name for a region



Subnets and Aggregation

- Two use cases for adjusting the size of IP prefixes; both reduce routing table
- 1. Subnets
 - Internally split one large prefix into multiple smaller ones
- 2. Aggregation
 - Join multiple smaller prefixes into one large prefix


Subnets

• Internally split up one IP prefix

Aggregation

• Externally join multiple separate IP prefixes

Routing Process

- 1. Ship these prefixes or regions around to nearby routers
- 2. Receive multiple prefixes and the paths of how you got them
- 3. Build a global routing table

Internet Routing Growth

Growth of the BGP Table - 1994 to Present 800000 700000 600000 500000 **RIB Entries** 400000 BGP 300000 200000 100000 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 94 97 Date Source: bgp.potaroo.net

CSE 461 University of Washington