Network Layer (IP)

Recall the protocol stack

Application Transport Network Link Physical

- Programs that use network service
- Provides end-to-end data delivery
- Send packets over multiple networks
- Send frames over one or more links
- Send bits using signals

Network Layer

Goal: Get packets from source to destination, which may be separated by many hops

Application
Transport
Network
Link
Physical

Why do we need a Network layer?

- Cannot afford to directly connect everyone
 - Cost and link layer diversity

Why do we need a Network layer? (2)

Cannot broadcast all packets at global scale

Why do we need a Network layer? (3)

- Internetworking
 - Need to connect different link layer networks
- Addressing
 - Need a globally unique way to "address" hosts
- Routing and forwarding
 - Need to find and traverse paths between hosts

Routing versus Forwarding

• <u>Routing:</u> deciding the direction to send traffic

• <u>Forwarding</u>: sending a packet on its way

Network Service Models

Network service models

- What kind of service does the Network layer provide to the Transport layer?
 - How is it implemented at routers?

Two Network Service Models

- Datagrams, or connectionless service
 - Like postal letters
 - (IP as an example)

- Virtual circuits, or connection-oriented service
 - Like a telephone call

Datagram Model

 Packets contain a destination address; each router uses it to forward packets, maybe on different paths

Datagram Model (2)

Each router has a forwarding table keyed by address
Gives next hop for each destination address; may change

IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet

•		32	Bits-			
		1				
Version	IHL	Differentiated Services		Total length		
dentification			D M F F	Fragment offset		
Time to live		Protocol		Header checksum		
Source address						
	Destination address					
Options (0 or more words)						
		Payload (e.g.,	TCP se	gment)		

Virtual Circuit Model

- Three phases:
 - 1. Connection establishment, circuit is set up
 - Path is chosen, circuit information stored in routers
 - 2. Data transfer, circuit is used
 - Packets are forwarded along the path
 - 3. Connection teardown, circuit is deleted
 - Circuit information is removed from routers
- Just like a telephone circuit, but virtual in that no bandwidth need be reserved; statistical sharing of links

Virtual Circuits

- Packets contain a short label to identify the circuit
 - Labels don't have global meaning, only unique for a link

Virtual Circuits (2)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undo at egress

Datagrams vs Virtual Circuits

Complementary strengths

Issue	Datagrams	Virtual Circuits
Setup phase	Not needed	Required
Router state	Per destination	Per connection
Addresses	Packet carries full address	Packet carries short label
Forwarding	Per packet	Per circuit
Failures	Easier to mask	Difficult to mask
Quality of service	Difficult to add	Easier to add

Internetworking (IP)

Торіс

- How do we connect different networks together?
 - This is called internetworking
 - We'll look at how IP does it

How Networks May Differ

- Lot of ways:
 - Service model (datagrams, VCs)
 - Addressing (what kind)
 - QOS (priorities, no priorities)
 - Packet sizes
 - Security (whether encrypted)
- Internetworking hides the differences with a common protocol. (Uh oh.)

Connecting Datagram and VC networks

- An example to show that it's not so easy
 - Need to map destination address to a VC and vice-versa
 - A bit of a "road bump", e.g., might have to set up a VC

Internetworking – Cerf and Kahn

- Pioneers: Cerf and Kahn
 - "Fathers of the Internet"
 - In 1974, later led to TCP/IP
- Tackled the problems of interconnecting networks
 - Instead of mandating a single technology

Internet Reference Model

- Internet Protocol (IP) is the "narrow waist"
 - Supports many different links below and apps above

IP as a Lowest Common Denominator

- Suppose only some networks support QOS or security etc.
 - Difficult for internetwork to support
- Pushes IP to be a "lowest common denominator"
 - Asks little of lower-layer networks
 - Gives little as a higher layer service

IPv4 (Internet Protocol)

- Various fields to meet straightforward needs
 - Version, Header (IHL), Total length, Protocol, and Header Checksum

• Some fields to handle packet size differences (later)

• Identification, Fragment offset, Fragment control bits

IPv4 (3)

• Other fields to meet other needs (later, later)

• Differentiated Services, Time to live (TTL)

- Network layer of the Internet, uses datagrams
 - Provides a layer of addressing above link addresses (next)

