
Congestion



TCP to date:

•We can set up and tear connections 
• Connection establishment and release handshakes

•Keep the sending and receiving buffers from 
overflowing (flow control)

What’s missing?



Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it
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What’s the hold up?

Network



Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the network grew
• Links stayed busy but transfer rates fell by orders of 

magnitude! 
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Nature of Congestion

•Routers/switches have internal buffering 
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Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full
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Nature of Congestion (3)

Queues absorb bursts when input > output rate

But if input > output rate persistently, queue will 
overflow à congestion

Congestion is a function of the traffic patterns – can 
occur even if every link has the same capacity
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Effects of Congestion

•What happens to performance as we increase load?



Effects of Congestion (2)

•What happens to performance as we increase load?



Effects of Congestion (3)

•As offered load rises, congestion occurs as queues 
begin to fill:
• Delay and loss rise sharply with load
• Throughput < load (due to loss)
• Goodput << throughput (due to spurious retransmissions)

•None of the above is good!
•Want network performance just before congestion
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TCP Tahoe/Reno

•TCP extensions and features we will study:
• AIMD
• Fair Queuing
• Slow-start
• Fast Retransmission
• Fast Recovery
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TCP Timeline
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1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse 
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)



TCP Timeline (2)
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201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, ‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, ’06)

. . .

BackgroundRouter support
Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)



Bandwidth Allocation

• Important task for network is to allocate its capacity 
to senders
• Good allocation is both efficient and fair

•Efficient: most capacity is used but there is no 
congestion
•Fair: every sender gets a reasonable share of the 

network
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Efficiency vs. Fairness

•Cannot always have both!
• Example network with traffic:
• AàB, BàC and AàC 

• How much traffic can we carry?
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Efficiency vs. Fairness (2)

• If we care about fairness:
• Give equal bandwidth to each flow
• AàB: ½ unit, BàC: ½, and AàC, ½ 
• Total traffic carried is 1 ½ units
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Efficiency vs. Fairness (3)

• If we care about efficiency:
•Maximize total traffic in network
• AàB: 1 unit, BàC: 1, and AàC, 0 
• Total traffic rises to 2 units!
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The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
• AàC uses more network resources than AàB or BàC
• Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation
• A node that cannot use any bandwidth

• “Equal per flow” is good enough
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Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is  the link that limits 
its bandwidth
•Where congestion occurs for the flow
• For AàC, link A–B is the bottleneck
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Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
• For AàC, link A–B is the bottleneck
• For BàC, link B–C is the bottleneck
• Can no longer divide links equally …
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Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal 
share of that link
•Max-min fair allocation is one that:
• Increasing the rate of one flow will decrease the rate of a 

smaller flow
• This “maximizes the minimum” flow
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Max-Min Fairness (2)

•To find it given a network, imagine “pouring water 
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in 

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows
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Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation? 
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Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5 
• Fix B, C, and D, continue to increase A 
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Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done. 
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Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 
full 
• Other links have extra capacity that can’t be used

• , linksxample: network with 4 flows, links equal 
bandwidth
•What is the max-min fair allocation? 

CSE 461 University of Washington 27



Adapting over Time

•Allocation changes as flows start and stop

CSE 461 University of Washington 28

Time 



Adapting over Time (2)
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Flow 1 slows when 
Flow 2 starts

Flow 1 speeds up 
when Flow 2 stops

Time 

Flow 3 limit 
is elsewhere



Why is Bandwidth Allocation hard?

•Number of senders and their offered load changes
• Senders may be limited in other ways
• Other parts of network or by applications

•Network is distributed; no single party has an overall 
picture of its state
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Bandwidth Allocation Solution Context

In networks without admission control (e.g., Internet) 
Transport and Network layers must work together
• Network layer sees congestion
• Only it can provide direct feedback

• Transport layer causes congestion
• Only it can reduce load
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Bandwidth Allocation Solution Overview

• Senders adapt concurrently based on their own view 
of the network
•Design this adaptation so the network usage as a 

whole is efficient and fair
• In practice, efficiency is more important than fairness

•Adaptation is continuous since offered loads continue 
to change over time
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Bandwidth Allocation Models

•Open loop versus closed loop
• Open: reserve bandwidth before use
• Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
• How is allocation expressed?
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Additive Increase Multiplicative Decrease 

•AIMD is a control law hosts can use to reach a good 
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

• Let’s explore the AIMD game …
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AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested
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AIMD Game (2)

•Each point is a possible allocation
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AIMD Game (3)

•AI and MD move the allocation 
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AIMD Game (4)

•Play the game!
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AIMD Game (5)

•Always converge to good allocation!
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AIMD Sawtooth

•Produces a “sawtooth” pattern  over time for rate of 
each host
• This is the TCP sawtooth (later)
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AIMD Properties

•Converges to an allocation that is efficient and fair 
when hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not! (Try 
MIAD, MIMD, MIAD)
•Requires only binary feedback from the network
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Feedback Signals

•Several possible signals, with different pros/cons
•We’ll look at classic TCP that uses packet loss as a signal
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Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay BBR
(Google)

Hear about congestion early
Need to infer congestion

Router 
indication

TCPs with Explicit 
Congestion Notification

Hear about congestion early
Require router support



Slow Start (TCP Additive Increase)



TCP “Slow Start” Problem

•We want to quickly near the right rate, cwndIDEAL, but 
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the 

network (loss!) 
• Additive Increase with small bursts adapts cwnd gently, 

but might take a long time to become efficient
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Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values
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Slow-Start Solution (2)

•Eventually packet loss will occur when the network 
is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI
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Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value
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Slow-Start (Doubling) Timeline
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Increment cwnd
by 1 packet for 
each ACK



Additive Increase Timeline
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Increment cwnd by 1 
packet every cwnd
ACKs (or 1 RTT)



TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout
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