
Congestion

TCP to date:

•We can set up and tear connections
• Connection establishment and release handshakes

•Keep the sending and receiving buffers from
overflowing (flow control)

What’s missing?

Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it

CSE 461 University of Washington 3

What’s the hold up?

Network

Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the network grew
• Links stayed busy but transfer rates fell by orders of

magnitude!

CSE 461 University of Washington 4

Nature of Congestion

•Routers/switches have internal buffering

CSE 461 University of Washington 5

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full

CSE 461 University of Washington 6

Router

=

(FIFO) Queue
Queued
Packets

Router

Nature of Congestion (3)

Queues absorb bursts when input > output rate

But if input > output rate persistently, queue will
overflow à congestion

Congestion is a function of the traffic patterns – can
occur even if every link has the same capacity

CSE 461 University of Washington 7

Effects of Congestion

•What happens to performance as we increase load?

Effects of Congestion (2)

•What happens to performance as we increase load?

Effects of Congestion (3)

•As offered load rises, congestion occurs as queues
begin to fill:
• Delay and loss rise sharply with load
• Throughput < load (due to loss)
• Goodput << throughput (due to spurious retransmissions)

•None of the above is good!
•Want network performance just before congestion

CSE 461 University of Washington 10

TCP Tahoe/Reno

•TCP extensions and features we will study:
• AIMD
• Fair Queuing
• Slow-start
• Fast Retransmission
• Fast Recovery

CSE 461 University of Washington 12

TCP Timeline

CSE 461 University of Washington 13

1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)

TCP Timeline (2)

CSE 461 University of Washington 14

201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, ‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, ’06)

. . .

BackgroundRouter support
Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)

Bandwidth Allocation

• Important task for network is to allocate its capacity
to senders
• Good allocation is both efficient and fair

•Efficient: most capacity is used but there is no
congestion
•Fair: every sender gets a reasonable share of the

network

CSE 461 University of Washington 15

Efficiency vs. Fairness

•Cannot always have both!
• Example network with traffic:
• AàB, BàC and AàC

• How much traffic can we carry?

CSE 461 University of Washington 16

A B C
1 1

Efficiency vs. Fairness (2)

• If we care about fairness:
• Give equal bandwidth to each flow
• AàB: ½ unit, BàC: ½, and AàC, ½
• Total traffic carried is 1 ½ units

CSE 461 University of Washington 17

A B C
1 1

Efficiency vs. Fairness (3)

• If we care about efficiency:
•Maximize total traffic in network
• AàB: 1 unit, BàC: 1, and AàC, 0
• Total traffic rises to 2 units!

CSE 461 University of Washington 18

A B C
1 1

The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
• AàC uses more network resources than AàB or BàC
• Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation
• A node that cannot use any bandwidth

• “Equal per flow” is good enough

CSE 461 University of Washington 19

Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is the link that limits
its bandwidth
•Where congestion occurs for the flow
• For AàC, link A–B is the bottleneck

CSE 461 University of Washington 20

A B C
1 10

Bottleneck

Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
• For AàC, link A–B is the bottleneck
• For BàC, link B–C is the bottleneck
• Can no longer divide links equally …

CSE 461 University of Washington 21

A B C
1 10

Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal
share of that link
•Max-min fair allocation is one that:
• Increasing the rate of one flow will decrease the rate of a

smaller flow
• This “maximizes the minimum” flow

CSE 461 University of Washington 22

Max-Min Fairness (2)

•To find it given a network, imagine “pouring water
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

CSE 461 University of Washington 23

Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation?

CSE 461 University of Washington 24

Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5
• Fix B, C, and D, continue to increase A

CSE 461 University of Washington 25

BottleneckBottleneck

Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done.

CSE 461 University of Washington 26

Bottleneck

Bottleneck

Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5
full
• Other links have extra capacity that can’t be used

• , linksxample: network with 4 flows, links equal
bandwidth
•What is the max-min fair allocation?

CSE 461 University of Washington 27

Adapting over Time

•Allocation changes as flows start and stop

CSE 461 University of Washington 28

Time

Adapting over Time (2)

CSE 461 University of Washington 29

Flow 1 slows when
Flow 2 starts

Flow 1 speeds up
when Flow 2 stops

Time

Flow 3 limit
is elsewhere

Why is Bandwidth Allocation hard?

•Number of senders and their offered load changes
• Senders may be limited in other ways
• Other parts of network or by applications

•Network is distributed; no single party has an overall
picture of its state

CSE 461 University of Washington 30

Bandwidth Allocation Solution Context

In networks without admission control (e.g., Internet)
Transport and Network layers must work together
• Network layer sees congestion
• Only it can provide direct feedback

• Transport layer causes congestion
• Only it can reduce load

CSE 461 University of Washington 31

Bandwidth Allocation Solution Overview

• Senders adapt concurrently based on their own view
of the network
•Design this adaptation so the network usage as a

whole is efficient and fair
• In practice, efficiency is more important than fairness

•Adaptation is continuous since offered loads continue
to change over time

CSE 461 University of Washington 32

Bandwidth Allocation Models

•Open loop versus closed loop
• Open: reserve bandwidth before use
• Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
• How is allocation expressed?

CSE 461 University of Washington 33
TCP is a closed loop, host-driven, and window-based

Additive Increase Multiplicative Decrease

•AIMD is a control law hosts can use to reach a good
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

• Let’s explore the AIMD game …

CSE 461 University of Washington 35

AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested

CSE 461 University of Washington 36

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1

AIMD Game (2)

•Each point is a possible allocation

CSE 461 University of Washington 37

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested

AIMD Game (3)

•AI and MD move the allocation

CSE 461 University of Washington 38

Host 1

Host 20 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

AIMD Game (4)

•Play the game!

CSE 461 University of Washington 39

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Game (5)

•Always converge to good allocation!

CSE 461 University of Washington 40

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Sawtooth

•Produces a “sawtooth” pattern over time for rate of
each host
• This is the TCP sawtooth (later)

CSE 461 University of Washington 41

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or
2’s Rate

AIMD Properties

•Converges to an allocation that is efficient and fair
when hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not! (Try
MIAD, MIMD, MIAD)
•Requires only binary feedback from the network

CSE 461 University of Washington 42

Feedback Signals

•Several possible signals, with different pros/cons
•We’ll look at classic TCP that uses packet loss as a signal

CSE 461 University of Washington 43

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay BBR
(Google)

Hear about congestion early
Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

Hear about congestion early
Require router support

Slow Start (TCP Additive Increase)

TCP “Slow Start” Problem

•We want to quickly near the right rate, cwndIDEAL, but
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the

network (loss!)
• Additive Increase with small bursts adapts cwnd gently,

but might take a long time to become efficient

CSE 461 University of Washington 46

Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values

47

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start

Slow-Start Solution (2)

•Eventually packet loss will occur when the network
is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 48

Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value

49

AI

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 50

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 51

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

CSE 461 University of Washington 52

