
Cloud and containers

Ratul Mahajan
CSE 461

Image from Microsoft Azure

HUGE data centers (DCN)

• Thousands of routers
• Hundreds of thousands of servers

Connected by massive pipes

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

Google’s Oregon DC

Inside a Google DC

DCN topologies

• Big iron à Commodity switches

DCN topologies

• Big iron à Commodity switches
• 1 Gbps à 10 Gbps à 40 Gbps à 100 Gbps (soon)
• Copper à Fiber

Oversubscription ratio

• Ratio of bisection bandwidth across layers of hierarchy
• Key design parameter that trades-off cost and performance
• Higher oversubscription = lower cost but higher chance of congestion

DCN routing

• Spanning tree (L2) à OSPF/ISIS à BGP

• Each router acts as its own autonomous system (AS)

Backbone

• Provides global connectivity to DCs

Backbone

• Provides global connectivity to DCs

• May also have two backbones
• A “public” backbone to connect to the outside world
• A ”private” backbone for inter-DC connectivity

• Uses transcontinental and transoceanic fiber cables

• Routing: Distributed routing à SDN-based traffic engineering

SDN – Software Defined Networking

Decouple control and data plane
• Control plane populates the data plane entries (routing)
• Data plane forwards traffic (forwarding)

Traditionally, routing and forwarding are in the same device

Control plane separation opens up lots of new opportunities
• Traffic engineering in backbones (next)
• Network virtualization (later)

SDN-based traffic engineering

Centralized computation of forwarding tables
• Compute “optimal” paths outside of the network
• Based on estimated load; also factor in application priorities

What is in the box?

Router

A computer optimized for routing and forwarding
• Operating system to manage resources
• Routing protocol implementations (e.g., BGP, OSPF)
• Lots of ports (network interfaces, not TCP ports)
• Chip to forward traffic between ports at “line rate”

Router (2)

Traditionally, a hardware-software combo sold by a router vendor
• Cisco
• Juniper
• Arista
• ….

But moving toward open systems
• SONiC – open source router OS from Microsoft
• Running on “commodity” hardware

Configuring the router

Routers are not plug-n-play
• Configure IP addresses
• Configure which protocols to run
• Configure those protocols
• Configure management aspects, e.g., DNS servers, NTP servers

Configuration uses custom syntax:
• Example Cisco file:

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/netwo
rks/example/configs/as1border2.cfg

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/networks/example/configs/as1border2.cfg

Configuring the router (2)

Traditionally, configuration has been done manually
• Figure out the change, reason about it manually
• Log in to the router and apply the change
• High risk of logical errors and “fat fingers”

Increasingly, more automation
• Ansible, Batfish

Making a network out of routers

1. Get them connected

Making a network out of routers

1. Get them connected

2. Configure routers
• Basic initial configuration provides connectivity to the router

3. Monitor, monitor, monitor

4. Configuration changes and maintenance

What is in this box?

Originally

Hardware

OS

App App

To network

Libs

Then came virtual machines (VMs)

Hardware

Hypervisor + OS

To network

Virtual HWVirtual HW

VMHW became too powerful
• Run multiple OSes on

the same machine
• Cheaper that way

The hypervisor virtualizes the
HW and fools the OS
• Provides isolation

The network thinks multiple hosts are connected
The hypervisor acts as a hub for inter-VM traffic

App App

OS

Libs

App App

OS

Libs

VMs in the cloud

Hardware

Hypervisor

Virtual HWVirtual HW

Hardware

Hypervisor

Virtual HWVirtual HW

Customer A Customer B Customer B Customer C

10.10.10.1 10.10.10.2

192.1.1.1 206.7.7.8

Underlay (physical)

Overlay (virtual)

Forwarding between VMs involves a lookup from
overlay address to underlay location

App App

OS

Libs

App App

OS

Libs

App App

OS

Libs

App App

OS

Libs

Enter containers

Hardware

OS

To network

App

Libs

Container runtime (Docker)

App

Libs
ContainerLighter-weight virtualization than VMs

• Libraries, not the full OS

Better isolation and packaging than apps
• Bundle the library versions you need

Container networking

Connect containers to the outside world
and to each other
• Port conflicts among containers and other

apps running on the same host
• High performance between containers on

the same host
• (Virtual) private network between related

containers (service mesh)
Hardware

OS

Container runtime (Docker)

App

Libs

App

Libs

Container networking: Host

Containers share the IP address (and networking stack) of the host.
• Cannot handle port conflicts
• Minimal overhead

Container networking: Bridge

An internal network for containers on the same host.
• Use NATs for outside world

Container networking: Overlay

Create a private network across containers on different hosts
• VXLAN is a common way to do that

Enter microservices

Instead of a developing a large monolithic application, structure the
application as a bunch of communicating microservices
• Each microservice serves a (small) dedicated function, e.g., authentication

• Can be written in any language
• Can evolve independent of other microservices
• Can be scaled independent of other microservices

• Each microservice gets a container

But now you may have lots of services across lots of containers
• Containers need to be deployed and scaled è container orchestration
• Communication between services needs to be managed è service meshes

Container orchestration (Kubernetes)

Containers are wrapped in
Pods which are run on a
Cluster of
Nodes

Pods implement a service

https://sensu.io/blog/how-kubernetes-works

Service meshes (Istio)

“Application defined networking”
• Secure inter-service communication
• Load balancing for HTTP, gRPC,

WebSocket, and TCP traffic
• Traffic behavior (routing rules,

retries, failover)
• Access control, rate limits, and quotas
• Metrics, logs, and traces

https://istio-releases.github.io/v0.1/docs/
concepts/what-is-istio/overview.html

What is not to like?

Service mesh overhead measurements

