Cloud and containers

Ratul Mahajan
CSE 461

A

Microsoft Azure

O

Alibaba Cloud

II.
—

L
“amaZon
aF webs

services

a

Google Cloud

B
D
.

US Gov lowa

West US 2
*

West Central US
West US

Central US

US Gov Arizona
South Central US

US Gov Texas

Available region
"% Announced region

4 Availability Zone(s) present

o Canada Central
North Central US
US DoD East
* East US
(East US 2

US Gov Virginia
US DoD Central

Canada East

Brazil South

Norway West

.

+"s, » '+ Norway East

West Europe e
Germany West Central
UK South
Germany North
Mok R * ':_:' Germany Northeast

UK West . A.s) Germany Central
France Central G
= .+ Switzerland North
France South K X
Switzerland West

UAE North

UAE Central #%."

‘at

West India

Central India

South India

South Africa North

South Africa West

Image from Microsoft Azure

China North £ %) China North 2

Korea Central
Japan East
[CICERY)]
Japan West

ChinaEast2 { §) China East

East Asia

Southeast Asia ‘&

Australia East

J Australia Central

Australia Southeast W el @]9

HUGE data centers (DCN)

e Thousands of routers
 Hundreds of thousands of servers

Connected by massive pipes
MICROSOFT \ TECH \ FACEBOOK
Microsoft and Facebook just laid a 160-terabits-per- '~
second cable 4,100 miles across the Atlantic

Enough bandwidth to stream 71 million HD videos at the same time

By Thuy Ong | @ThuyOng | Sep 25, 2017, 7:56am EDT

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

Google’s Oregon DC

Inside a Google DC

DCN topologies

* Big iron 2 Commodity switches

Pod 3

Pod 2

Pod 1

Pod 0

Core

@s

oy,

DCN topologies

* Big iron 2 Commodity switches
* 1 Gbps = 10 Gbps = 40 Gbps = 100 Gbps (soon)
* Copper -2 Fiber

Oversubscription ratio

* Ratio of bisection bandwidth across layers of hierarchy

* Key design parameter that trades-off cost and performance
* Higher oversubscription = lower cost but higher chance of congestion

DCN routing

e Spanning tree (L2) = OSPF/ISIS - BGP

* Each router acts as its own autonomous system (AS)

Backbone

* Provides global connectivity to DCs

Datacenters e NewYork

Los

Hong Kong Angeles

lorida
Aggregate
cable bundles

Backbone

* Provides global connectivity to DCs

* May also have two backbones
* A “public” backbone to connect to the outside world
* A”private” backbone for inter-DC connectivity

e Uses transcontinental and transoceanic fiber cables

* Routing: Distributed routing > SDN-based traffic engineering

SDN — Software Defined Networking

Decouple control and data plane
e Control plane populates the data plane entries (routing)
e Data plane forwards traffic (forwarding)

Traditionally, routing and forwarding are in the same device

Control plane separation opens up lots of new opportunities
* Traffic engineering in backbones (next)
* Network virtualization (later)

SDN-based traffic engineering

Centralized computation of forwarding tables
 Compute “optimal” paths outside of the network
* Based on estimated load; also factor in application priorities

Network agent Switch
atacenter

. .— Datacenter

< Inter-DC
WAN

¥~ SWAN controller

S Rk Service broker

What is in the box?

Core

Aggregation

10.2.0.2 10.2.0.3

Pod 3

Pod 2

Pod 1

Pod 0

Router

A computer optimized for routing and forwarding
* Operating system to manage resources
* Routing protocol implementations (e.g., BGP, OSPF)
* Lots of ports (network interfaces, not TCP ports)
* Chip to forward traffic between ports at “line rate”

Router (2)

Traditionally, a hardware-software combo sold by a router vendor
* Cisco
* Juniper
* Arista

But moving toward open systems
* SONiIC — open source router OS from Microsoft
* Running on “commodity” hardware

Configuring the router

Routers are not plug-n-play
e Configure IP addresses
* Configure which protocols to run
* Configure those protocols
* Configure management aspects, e.g., DNS servers, NTP servers

Configuration uses custom syntax:

e Example Cisco file:
https://github.com/batfish/pybatfish/blob/master/jupyter notebooks/netwo
rks/example/configs/aslborder?2.cfg

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/networks/example/configs/as1border2.cfg

Configuring the router (2)

Traditionally, configuration has been done manually
* Figure out the change, reason about it manually
* Log in to the router and apply the change
* High risk of logical errors and “fat fingers”

Increasingly, more automation
* Ansible, Batfish

Making a network out of routers

1. Get them connected

Making a network out of routers

1. Get them connected

2. Configure routers
* Basic initial configuration provides connectivity to the router

3. Monitor, monitor, monitor

4. Configuration changes and maintenance

What is in this box?

Aggregation

10.2.0.2 10.2.0.3

Pod 3

Pod 2

Originally

Hardware

To network

Then came virtual machines (VMs)

App App
HW became too powerful
i Libs
* Run multiple OSes on
the same machine

* Cheaper that way Virtual HW Virtual HW

Hypervisor + OS

The hypervisor virtualizes the
HW and fools the OS

* Provides isolation

The network thinks multiple hosts are connected
The hypervisor acts as a hub for inter-VM traffic

To network

VMs in the cloud

Customer A Customer B Customer B Customer C

App App App App

10.10.10.1 10.10.10.2 Libs Libs

"" O 0S
Overlay (virtual)

Virtual HW Virtual HW Virtual HW Virtual HW

Hypervisor

192.1.1.1 206.7.7.8

Hypervisor

Underlay (physical)

Forwarding between VMs involves a lookup from
overlay address to underlay location

Enter containers

App App

Lighter-weight virtualization than VMs — Container

e Libraries, not the full OS — —

Container runtime (Docker)

Better isolation and packaging than apps
* Bundle the library versions you need S

Hardware

To network

Container networking

Connect containers to the outside world
and to each other

* Port conflicts among containers and other
apps running on the same host

* High performance between containers on
the same host

e (Virtual) private network between related
containers (service mesh)

App App

Libs Libs

Container runtime (Docker)

Hardware

Container networking: Host

Containers share the IP address (and networking stack) of the host.
e Cannot handle port conflicts
* Minimal overhead

container

ethO

Container networking: Bridge

An internal network for containers on the same host.
e Use NATs for outside world

container

Packet
eth0
172.17.0.7/16

src: 172.17.0.6/16 @ "

dest: 172.17.0.7 '
o - H
- @ ®:

vethxxx vethyyy

docker(bridge

Container networking: Overlay

Create a private network across containers on different hosts
e VXLAN is a common way to do that

Docker Host 1 Docker Host 2

H 10.0.0.4 ”

Enter microservices

Instead of a developing a large monolithic application, structure the
application as a bunch of communicating microservices

* Each microservice serves a (small) dedicated function, e.g., authentication
e Can be written in any language
e Can evolve independent of other microservices
e Can be scaled independent of other microservices

* Each microservice gets a container

But now you may have lots of services across lots of containers
» Containers need to be deployed and scaled = container orchestration
 Communication between services needs to be managed =2 service meshes

Container orchestration (Kubernetes)

Containers are wrapped in

Worker node 1

Pods which are run on 3 Kubernetes architecture a1 veds eeas
Cluster of | e
N Od es i“tes';'gce Control plane —> i

API Server

Worker node 2

Scheduler e

Controller-Manager [

Pods implement a service

Pod 2 Pod 3

—
Container 1

etcd

kubectl

https://sensu.io/blog/how-kubernetes-works

Service meshes (Istio)

“Application defined networking” Control Plane AP!
. . . . Control flow during ' . .
e Secure inter-service communication request processing [Istio-Manager J [Mixer] [Istio-Auth]

S
1 ~

~

Load balancing for HTTP, gRPC, Config datato | ">
WebSocket, and TCP traffic

TLS certs
to Envoy

Policy checks,

telemetry
. Trafflc behawor (routing rules, > <
retries, fallover) HTTP/1.1, HTTP/2, HTTP/1.1, HTTP/2,
gRPC, TCP with or) gRPC, TCP with or Evoy
. . withou withou

* Access control, rate limits, and quotas oL | o]
. VCA vcB

* Metrics, logs, and traces) A\
Service A Service B

What IS hot to ||kE? https://istio-releases.github.io/v0.1/docs/

concepts/what-is-istio/overview.html

Service mesh overhead measurements

Hotel

(240D |enMIA)NGD

Hotel
I
S

X2 Measured
E7S4 Predicted

N Base
B Base

6000 A
5000 A
4000 -
3000 A
2000 A

(sw)Aouaie

TCP gRPC TCP gRPC

TCP gRPC

TCP gRPC

TCP gRPC

Q3

Q2

Ql

Q3

Q2

Q1

