Cloud and containers

Ratul Mahajan CSE 461

C-J Alibaba Cloud

Image from Microsoft Azure

HUGE data centers (DCN)

- Thousands of routers
- Hundreds of thousands of servers

Connected by massive pipes

MICROSOFT \ TECH \ FACEBOOK \

Microsoft and Facebook just laid a 160-terabits-per-

Enough bandwidth to stream 71 million HD videos at the same time

By Thuy Ong | @ThuyOng | Sep 25, 2017, 7:56am EDT

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

Google's Oregon DC

Inside a Google DC

DCN topologies

• Big iron \rightarrow Commodity switches

DCN topologies

- Big iron \rightarrow Commodity switches
- 1 Gbps \rightarrow 10 Gbps \rightarrow 40 Gbps \rightarrow 100 Gbps (soon)
- Copper \rightarrow Fiber

Oversubscription ratio

- Ratio of bisection bandwidth across layers of hierarchy
- Key design parameter that trades-off cost and performance
 - Higher oversubscription = lower cost but higher chance of congestion

DCN routing

- Spanning tree (L2) \rightarrow OSPF/ISIS \rightarrow BGP
- Each router acts as its own autonomous system (AS)

Backbone

• Provides global connectivity to DCs

Backbone

- Provides global connectivity to DCs
- May also have two backbones
 - A "public" backbone to connect to the outside world
 - A "private" backbone for inter-DC connectivity
- Uses transcontinental and transoceanic fiber cables
- Routing: Distributed routing \rightarrow SDN-based traffic engineering

SDN – Software Defined Networking

Decouple control and data plane

- Control plane populates the data plane entries (routing)
- Data plane forwards traffic (forwarding)

Traditionally, routing and forwarding are in the same device

Control plane separation opens up lots of new opportunities

- Traffic engineering in backbones (next)
- Network virtualization (later)

SDN-based traffic engineering

Centralized computation of forwarding tables

- Compute "optimal" paths outside of the network
- Based on estimated load; also factor in application priorities

What is in the box?

Router

A computer optimized for routing and forwarding

- Operating system to manage resources
- Routing protocol implementations (e.g., BGP, OSPF)
- Lots of ports (network interfaces, not TCP ports)
- Chip to forward traffic between ports at "line rate"

Router (2)

Traditionally, a hardware-software combo sold by a router vendor

- Cisco
- Juniper
- Arista
-

But moving toward open systems

- SONiC open source router OS from Microsoft
- Running on "commodity" hardware

Configuring the router

Routers are not plug-n-play

- Configure IP addresses
- Configure which protocols to run
- Configure those protocols
- Configure management aspects, e.g., DNS servers, NTP servers

Configuration uses custom syntax:

• Example Cisco file:

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/netwo rks/example/configs/as1border2.cfg

Configuring the router (2)

Traditionally, configuration has been done manually

- Figure out the change, reason about it manually
- Log in to the router and apply the change
- High risk of logical errors and "fat fingers"

Increasingly, more automation

• Ansible, Batfish

Making a network out of routers

1. Get them connected

Making a network out of routers

- 1. Get them connected
- 2. Configure routers
 - Basic initial configuration provides connectivity to the router
- 3. Monitor, monitor, monitor
- 4. Configuration changes and maintenance

What is in this box?

Originally

Then came virtual machines (VMs)

HW became too powerful

- Run multiple OSes on the same machine
- Cheaper that way

The hypervisor virtualizes the HW and fools the OS

• Provides isolation

The network thinks multiple hosts are connected The hypervisor acts as a hub for inter-VM traffic

VMs in the cloud

Forwarding between VMs involves a lookup from overlay address to underlay location

Enter containers

Lighter-weight virtualization than VMs

• Libraries, not the full OS

Better isolation and packaging than apps

• Bundle the library versions you need

Container networking

Connect containers to the outside world and to each other

- Port conflicts among containers and other apps running on the same host
- High performance between containers on the same host
- (Virtual) private network between related containers (service mesh)

Container networking: Host

Containers share the IP address (and networking stack) of the host.

- Cannot handle port conflicts
- Minimal overhead

Container networking: Bridge

An internal network for containers on the same host.

• Use NATs for outside world

Container networking: Overlay

Create a private network across containers on different hosts

• VXLAN is a common way to do that

Enter microservices

Instead of a developing a large monolithic application, structure the application as a bunch of communicating microservices

- Each microservice serves a (small) dedicated function, e.g., authentication
 - Can be written in any language
 - Can evolve independent of other microservices
 - Can be scaled independent of other microservices
- Each microservice gets a container

But now you may have lots of services across lots of containers

- Containers need to be deployed and scaled → container orchestration
- Communication between services needs to be managed → service meshes

Container orchestration (Kubernetes)

Containers are wrapped in **Pods** which are run on a **Cluster** of **Nodes**

Pods implement a service

https://sensu.io/blog/how-kubernetes-works

Service meshes (Istio)

"Application defined networking"

- Secure inter-service communication
- Load balancing for HTTP, gRPC, WebSocket, and TCP traffic
- Traffic behavior (routing rules, retries, failover)
- Access control, rate limits, and quotas
- Metrics, logs, and traces

What is not to like?

https://istio-releases.github.io/v0.1/docs/ concepts/what-is-istio/overview.html

Service mesh overhead measurements

