
Security and Project 3
Edan, Jason, Mark, Monty



Symmetric (Secret Key) Encryption

●Alice and Bob have the same secret key, KAB

○Anyone with the secret key can encrypt/decrypt

Introduction to Computer Networks 2

Alice Bob
Encrypt DecryptHi there

Ciphertext

Plaintext Plaintext

Secret key Secret key

I♥networ
ks

I♥networ
ks

K
AB

K
AB



Public Key (Asymmetric) Encryption

●Alice and Bob have public/private key pairs (KB / KB
-1)

○Public keys are well-known, private keys are secret

Introduction to Computer Networks 3

Alice Bob
Encrypt DecryptHi there

Ciphertext

Plaintext Plaintext

Bob’s 
public key

Bob’s
private key

I♥networ
ks

I♥networ
ks

K
B

-1
K

B



Public Key Encryption (2)

●Alice encrypts w/ Bob’s pubkey KB; anyone can send
●Bob decrypts w/ his private key KB

-1; only he can

Introduction to Computer Networks 4

Alice Bob
Encrypt DecryptHi there

Ciphertext

Plaintext Plaintext

Bob’s 
public key

Bob’s
private key

I♥networ
ks

I♥networ
ks

K
B

-1
K

B



How can we trust a public key?



Certificates

•A certificate binds pubkey to identity, e.g., domain
•Distributes public keys when signed by a party you trust
•Commonly in a format called X.509 

Introduction to Computer Networks 6

Signed by CA



PKI (Public Key Infrastructure)

•Adds hierarchy to certificates to let parties issue
• Issuing parties are called CAs (Certificate Authorities)

Introduction to Computer Networks 7

I certified the 
ABC website!



I certified the 
ABC website!

PKI (2)

•Need public key of PKI root and trust in servers on           
path to verify a public key of website ABC

•Browser has Root’s public key
•{RA1’s key is X} signed Root
•{CA1’s key is Y} signed RA1
•{ABC’s key Z} signed CA1

Introduction to Computer Networks 8



Introduction to Computer Networks 9

PKI (3)

•Browser/OS has public keys of 
the trusted roots of PKI 

•>100 root certificates!
•That’s a problem …
• Inspect your web browser

Certificate for wikipedia.org 
issued by DigiCert



PKI (4)

•Real-world complication:
•Public keys may be compromised
•Certificates must then be revoked

•PKI includes a CRL (Certificate Revocation List)
•Browsers use to weed out bad keys 

Introduction to Computer Networks 10





Bufferbloat

“Bufferbloat is a cause of high 
latency in packet-switched 
networks caused by excess 
buffering of packets” – 
Wikipedia

12



Bufferbloat – Cause

● Host doesn’t know the bandwidth of the 
bottleneck link.

● TCP relies solely on packet losses to 
guide how fast to send.

○ It keeps sending faster and faster until a 
packet drops.

● With a queue, this can fill up the queue 
pretty quickly.

13



Bufferbloat – Problem

● Suppose h1 knows to send at 1.5 Mb/s, 
what’s the RTT when the queue is full?

○ …when it’s not full?
● TCP at the end of the day will operate at 

the bottleneck bandwidth, but is it 
necessary to fill up the queue?

14



A motivational example…

Not all “speedtests” capture bufferbloat… took a 
long time for the networking community to realize 
it was a problem!

● A regular “ping” test, used to measure RTT in 
practice, won’t fill the buffers!

Let’s as a class try it out:

● https://www.waveform.com/tools/bufferbloat
○ Loaded latency vs. unloaded latency
○ How big is the difference?

15

https://www.waveform.com/tools/bufferbloat


Real-world Initiatives

Active Queue Management (AQM)

● Goal is to use better queue management techniques
● Leverage ECN to give fast feedback without causing loss

○ Unfortunately hard to deploy ECN CC “fairly” with existing CC algos (Reno, Cubic)
○ It works so much more responsively (aka better) it tends to takeover throughput from legacy 

TCP!

L4S “Low-latency, low-loss, scalable throughput” initiative at IETF

● One solution is to mandate a split at bottlenecks, two queues with 
independent behavior

● Required in latest cable modem standards

16



One AQM Technique: FQ_CODEL

● Initiatives to add flow-independent queues to bottleneck routers…
○ like L4S to an extreme… 
○ Each flow gets its own queue, and it’s the router’s job to make them all fair!
○ Attempts to estimate bottleneck and not queue any more than necessary to fill the pipe

■ Similar big idea to BBR
● Available in all modern Linux distros (kernel > 3.16)

○ Default in some
● Default in OpenWRT

○ Used as the basis for some commercial routers too (SpaceX Starlink is a prominent example)
● Relatively resource intensive though, so not feasible on “core” routers yet

17

💡 FQ == “Fair Queue”
CoDel == “Controlled Delay”



Bufferbloat aware transport: BBR

● Different type of solution than AQM
○ Operates only on end hosts

● Developed at Google in 2016 for YouTube 
traffic.

● Uses a model instead of loss to formulate how 
fast to send

○ Probe RTT and latency and predict the bottleneck 
bandwidth.

18



Project 3 – Goal

● Simulate bufferbloat problem.
● See the worse performance when queue size is larger
● See the difference between TCP Reno and TCP BBR.

19



Experiment Setup

● Long-lived TCP flow from h1 to h2
○ Simulate background traffic

● Back-to-back ping from h1 to h2
○ Measure RTT

● Spawn a webserver on h1 and 
periodically fetch a page

○ Simulate more important load
○ Measure time

● Plot time series of RTT and 
number of queued packets.

● Run the experiment with
○ Q=20 and Q=100
○ Reno and BBR
○ 4 experiments total

20



Detour – Hypothesize

In groups of 3-4,...

● In your own words, what is bufferbloat problem?
● For each of the 4 experiments (Q=20 or 100; and with Reno 

or BBR),
○ How do the webpage fetch time compare?

● How would plot between queue size and time look like for 
TCP Reno?

21



Detour – Hypothesize

In groups of 3-4,...

● In your own words, what is bufferbloat 
problem?

● For each of the 4 experiments (Q=20 or 
100; and with Reno or BBR),

○ How do the webpage fetch time compare?
● How would plot between queue 

utilization and time look like for TCP 
Reno?

22

Q=20 Q=100

Reno

BBR
<;=;>

<;=;>

<;=;>
<;=;>



Setup

● Use Mininet VM (same as Project 2)
● Get the starter code and install dependencies

cd ~

wget 
https://courses.cs.washington.edu/courses/cse461/22wi/projects/project3/resources/project3.zip

unzip project3.zip

sudo apt-get update

sudo apt install python3-pip

sudo python3 -m pip install mininet matplotlib

23



Starter Code

● run.sh
○ Run the entire experiment

■ Run bufferbloat.py on q=20 and q=100
■ Generate latency and queue length graphs

● bufferbloat.py
○ Complete the TODOs

■ Setup the mininet topology and the experiment
■ Write shell commands to do the measurements

24



Long-lived TCP Flow

● Starter code sets up iperf server on h2

● Goal: start iperf client on h1, connect to h2
○ Should be “long-lasting”, i.e. for time specified by 

--time parameter

● How do I connect to a certain IP or make 
the connection long-lasting?

○ man pages are your friend!
○ type `man iperf` in a Linux terminal

25



Ping Train

● Goal: Start “ping train” between h1 and h2
○ Pings should occur at 10 per second interval
○ Should run for entire experiment

● How do I specify the ping interval and how 
long the ping train runs?

○ man pages are your friend!
○ type `man ping` in a Linux terminal

● Write the RTTs recorded from `ping` to 
{args.dir}/ping.txt

○ See starter code comments for more detail

26



Download Webpage with curl

● Starter code spawns webserver on h1

● Goal: Use `curl` to measure fetch time to 
download webpage from h1

○ Starter code has hint on formatting curl command
○ Make sure `curl` doesn’t output an error

■ Errors report very small latency

● No need to plot fetch times; just need to 
report average fetch time for each 
experiment.

27



Plotting

● Starter code contains scripts for plotting, 
`plot_queue.py`, `plot_ping.py`

○ Expects queue occupancy in $dir/q.txt, ping 
latency in $dir/ping.txt

○ Plots are useful for debugging!

● Part 3, run same experiments with TCP 
BBR instead of TCP Reno

○ How do you expect the graph outputs to differ?

Q = 20

Q = 100

28


