Security and Project 3
Edan, Jason, Mark, Monty

Symmetric (Secret Key) Encryption

eAlice and Bob have the same secret key, K,
o Anyone with the secret key can encrypt/decrypt

Plaintext
| @ networ

Plaintext

| @ networ

ks

ks
Encrypt
Alice

Secret key "

Ciphertext

)

Bob

K Secret key

AB AB

Introduction to Computer Networks

Public Key (Asymmetric) Encryption

® Alice and Bob have public/private key pairs (K,/ K. ")
o Public keys are well-known, private keys are secret

Plaintext |, . Plaintext
@ networ | | | 1@ networ
ks i i ks
O EmE—
Alice i Ciphertext i 1 Bob
Bob’s € "B Kg Bob's
public key 3 private key

Introduction to Computer Networks

Public Key Encryption (2)

eAlice encrypts w/ Bob’s pubkey K;; anyone can send
®Bob decrypts w/ his private key K, '; only he can

Plaintext . Plaintext
@ networ | | | 1@ networ
ks i i ks
 EEE
Alice i Ciphertext i Bob
Bob’s €) 1 Bob’s
public key KB KB private key

Introduction to Computer Networks

Man-in-the-Middle Attacks

] x & x
S~ —

How can we trust a public key?

Certificates

*A certificate binds pubkey to identity, e.g., domain
* Distributes public keys when signed by a party you trust
eCommonly in a format called X.509

| hereby certify that the public key
19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A
belongs to
Robert John Smith
12345 University Avenue
Berkeley, CA 94702
Birthday: July 4, 1958
Email: bob@superdupernet.com

Signed hy, CA

Introduction to Computer Networks

PKI (Public Key Infrastructure)

*Adds hierarchy to certificates to let parties issue
*|ssuing parties are called CAs (Certificate Authorities)

| certified the

ABC website! / l \

Root

RA 2 is approved.
Its public key is
47383AE349. ..

Root's signature

CA 5 is approved.
Its public key is
6384AF863B. ..

| RA 2's signature

PKI (2)

*Need public key of PKI root and trust in servers on

path to verify a public key of website ABC

Root

*Browser has Root’s public key /
*{RA1’s key is X} signed Root | certified the| | .

*{CA1’s key is Y} signed RA1 ABC website!
*{ABC’s key Z} signed CA1l

CA 1

PKI (3)

*Browser/OS has public keys of
the trusted roots of PKI

*>100 root certificates!

*That’s a problem ...

*Inspect your web browser

Certificate for wikipedia.org
issued by DigiCert

@ Certificate Viewer:"*.wikipedia.org" VoA
General| Details

This certificate has been verified for the following uses:

SSL Server Certificate
Issued To
Common Name (CN) *.wikipedia.org
Organization (O) Wikimedia Foundation, Inc.
Organizational Unit (OU) <Not Part Of Certificate>
Serial Number 05:DF:E8:FF:15:B8:63:CC:C6:89:C7:8E:64:0C:FE:8B
Issued By
Common Name (CN) DigiCert High Assurance CA-3
Organization (O) DigiCert Inc
Organizational Unit (OU) www.digicert.com
Validity
Issued On 12/08/2011
Expires On 12/12/2012
Fingerprints
SHA1 Fingerprint 03:47:7F:F5:F6:3B:F5:86:10:C0:7D:65:9A:7B:A9:12:D3:20:83:68
MDS5 Fingerprint C0:C8:F7:A0:33:20:A2:D4:2E:27:65:73:42:4C:A0:24

Introduction to Computer Networks

9

PKI (4)

*Real-world complication:
*Public keys may be compromised
*Certificates must then be revoked

*PKl includes a CRL (Certificate Revocation List)
*Browsers use to weed out bad keys

Certificate

www.google.com

Subject Name

Country
Organization
Organizational Unit
Common Name

Issuer Name

Country
Organization
Organizational Unit
Common Name

Validity

Not Before
Not After

GTS CA1C3 GTS Root R1

BE

GlobalSign nv-sa
Root CA
GlobalSign Root CA

BE

GlobalSign nv-sa
Root CA
GlobalSign Root CA

Tue, 01 Sep 1998 12:00:00 GMT
Fri, 28 Jan 2028 12:00:00 GMT

GlobalSign Root CA

Bufferbloat

“Bufferbloat is a cause of high
latency in packet-switched
networks caused by excess
buffering of packets” —
Wikipedia

12

Bufferbloat — Cause

e Host doesn’t know the bandwidth of the
bottleneck link.
e TCP relies solely on packet losses to

guide how fast to send.

o It keeps sending faster and faster until a
packet drops.

e With a queue, this can fill up the queue
pretty quickly.

h1to h2

RTTmin=20ms

Router
1.5Mb/s 1Gb/s
< h1

Q=150kB (100 pkt)

ol o Slow [TCP sawtooth | Additive
@ ! S --¥ increase
% 351 Packet
g 35 Thresh. 4 loss o
S i F M I I s
e 25k rec:\?;ry ACK clock ge“:r:acaas“eve
g runnin
g oo Thresholdr------r- g

¢ Threshold -
§ s [MD of %2, no slow-start | e
S 1ol /
38
5k

13

Bufferbloat — Problem

e Suppose h1 knows to send at 1.5 Mb/s,
what’s the RTT when the queue is full?

o ...whenit’s

e TCP atthe end of the day will operate at
the bottleneck bandwidth, but is it

not full?

necessary to fill up the queue?

h1to h2
RTTmin=20ms

Router
1Gb/s

-

() 1.5Mb/s

Q=150kB (100 pkt)

O,

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT
BDP
BDP :

buffer
app limited bandwidth limited limited

RTprop
0 BtlBw
S “ V

KR

\\Q' optimum loss-based

: o operating congestion

= \QQ point control
@ is here operates here

14

A motivational example...

Not all “speedtests” capture bufferbloat... took a
long time for the networking community to realize
it was a problem!

e Aregular “ping” test, used to measure RTT in
practice, won't fill the buffers!

Let’s as a class try it out:

e https://www.waveform.com/tools/bufferbloat

o Loaded latency vs. unloaded latency
o How big is the difference?

LATENCY

Unloaded Download Active Upload Active

TTes | +11ms

| Download

112.7 ue

+59 o

1 Upload

6.15v%

15

https://www.waveform.com/tools/bufferbloat

Real-world Initiatives

Active Queue Management (AQM)

e (Goal is to use better queue management techniques

e Leverage ECN to give fast feedback without causing loss

o Unfortunately hard to deploy ECN CC “fairly” with existing CC algos (Reno, Cubic)
o It works so much more responsively (aka better) it tends to takeover throughput from legacy
TCP!

L4S “Low-latency, low-loss, scalable throughput” initiative at IETF

e One solution is to mandate a split at bottlenecks, two queues with
independent behavior
e Required in latest cable modem standards

16

One AQM Technique: FQ_CODEL . FQ == “Fair Queue”

CoDel == “Controlled Delay”

e Initiatives to add flow-independent queues to bottleneck routers...
o like L4S to an extreme...
o Each flow gets its own queue, and it’s the router’s job to make them all fair!
o Attempts to estimate bottleneck and not queue any more than necessary to fill the pipe
m Similar big idea to BBR
e Available in all modern Linux distros (kernel > 3.16)
o Default in some

e Defaultin OpenWRT

o Used as the basis for some commercial routers too (SpaceX Starlink is a prominent example)
e Relatively resource intensive though, so not feasible on “core” routers yet

17

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

Bufferbloat aware transport: BBR
e Different type of solution than AQM d o
o Operates only on end hosts \
e Developed at Google in 2016 for YouTube - <
traffic.
e Uses a model instead of loss to formulate how e
fast to send -
o Probe RTT and latency and predict the bottleneck
bandwidth. -
gl

18

Project 3 — Goal

e Simulate bufferbloat problem.
e See the worse performance when queue size is larger
e See the difference between TCP Reno and TCP BBR.

19

Experiment Setup

Long-lived TCP flow from h1 to h2

o Simulate background traffic

Back-to-back ping from h1 to h2
o Measure RTT

Spawn a webserver on h1 and

periodically fetch a page

o Simulate more important load
o Measure time

Plot time series of RTT and
number of queued packets.

h1to h2
RTTmin=20ms

Router
() 1.5Mb/s 1Gb/s

<

Q=150kB (100 pkt)

@

Run the experiment with

(@)

(©)

(@)

Q=20 and Q=100
Reno and BBR
4 experiments total

20

Detour — Hypothesize

In groups of 3-4,...

e In your own words, what is bufferbloat problem?
e For each of the 4 experiments (Q=20 or 100; and with Reno

or BBR),

o How do the webpage fetch time compare?
e How would plot between queue size and time look like for

TCP Reno?

21

Detour — Hypothesize

In groups of 3-4,...

e In your own words, what is bufferbloat
problem?

e For each of the 4 experiments (Q=20 or
100; and with Reno or BBR),

o How do the webpage fetch time compare?
e How would plot between queue
utilization and time look like for TCP
Reno?

Q=20

Reno

BBR

22

Setup

e Use Mininet VM (same as Project 2)
e Get the starter code and install dependencies

cd ~

wget

https://courses.cs.washington.edu/courses/csed61/22wi/projects/project3/resources/projectl3.zip
unzip project3.zip

sudo apt-get update

sudo apt install python3-pip

sudo python3 -m pip install mininet matplotlib

23

Starter Code

e run.sh
o Run the entire experiment
m Run bufferbloat.py on =20 and q=100
m Generate latency and queue length graphs
e bufferbloat.py

o Complete the TODOs
m Setup the mininet topology and the experiment
m Write shell commands to do the measurements

24

Long-lived TCP Flow

e Starter code sets up iperf server on h2

e (Goal: start iperf client on h1, connect to h2

o Should be “long-lasting”, i.e. for time specified by
--time parameter

e How do | connect to a certain IP or make

the connection long-lasting?
o man pages are your friend!
o type ‘'maniperf in a Linux terminal

h1to h2
RTTmin=20ms

() 1.5Mb/s

Router
1Gb/s

)

Q=150kB (100 pkt)

@

25

Ping Train

Goal: Start “ping train” between h1 and h2
o Pings should occur at 10 per second interval

o Should run for entire experiment
h1 to h2
RTTmin=20ms

How do | specify the ping interval and how

)) Router
long the ping train runs? 1.5Mbls 1 1Gbls
o man pages are your friend! (:) 5 P, @

o type ‘'man ping in a Linux terminal
Q=150kB (100 pkt)

Write the RTTs recorded from “ping’ to
{args.dir}/ping.txt

o See starter code comments for more detail

26

Download Webpage with curl

e Starter code spawns webserver on h1

e (Goal: Use "curl’ to measure fetch time to h1 to h2
RTTmin=20ms
download webpage from h1 -
: : Rout
o Starter code has hint on formatting curl command e ot 1 —
o Make sure “curl’ doesn’t output an error ®— <) @

m Errors report very small latency
Q=150kB (100 pkt)

e No need to plot fetch times; just need to
report average fetch time for each
experiment.

27

Plotting

e Starter code contains scripts for plotting,
‘plot_queue.py’, plot_ping.py’

o Expects queue occupancy in $dir/q.txt, ping
latency in $dir/ping.txt
o Plots are useful for debugging!

e Part 3, run same experiments with TCP
BBR instead of TCP Reno

o How do you expect the graph outputs to differ?

Q=20
ooooooooooooooooooo (cwnd) timeseries
80
. //l A //l A /] A A S /,\ //\ /Jl
v Vi vy v iy vy Vo
¥
seconds ©
Q=100
60 TCPcongestion window (cwnd) timeseries
500 A
EEDD / \
// T
A 5 60

28

