
Computer Networks
 Socket API, HW 1 fundamentals

Spring 2022
With Monty, Edan, Jason, and Mark!

Administrivia
● Project 1 is out! Due April 18th at 11:00pm

○ Can be done in groups of 2-3
○ Can be done in any language (recommend Java / Python)

■ Future labs will be in Python
■ Intent is to allow you to become familiar with some languages Socket API!

● Homework 1 is out! Due April 11th at 11:00pm
○ Read Chapter 1, specifically section 1.5 and beyond

● Quiz 1 in class tomorrow

Socket API & Project 1

Network-Application Interface
● Defines the operations that programs

(apps) call to use the network
○ Application Layer API
○ Defined by the Operating System

■ These operations are then exposed
through a particular programming
language

■ All major Operating Systems support
the Socket API

○ Allows two computer programs potentially
running on different machines to talk

○ Hides the other layers of the network

host

app
app

hostnetwork

Project 1
● Simple Client

○ Send requests to attu server
○ Wait for a reply
○ Extract the information from the reply
○ Continue…

● Simple Server
○ Server handles the Client requests
○ Multi-threaded

● This is the basis for many apps!
○ File transfer: send name, get file
○ Web browsing: send URL, get page
○ Echo: send message, get it back

host

ServerClient

host

network

Socket API
● Simple application-layer abstractions (APIs) to use the network

○ The network service API used to write all Internet applications
○ Part of all major OSes and languages; originally Berkeley (Unix) ~1983

● Two kinds of sockets
○ Streams (TCP): reliably send a stream of bytes

■ Detects packet loss with timeouts (uses adaptive timeout protocol)
■ Uses flow control: similar to selective repeat

○ Datagrams (UDP): unreliably send separate messages

Ports
● Sockets let apps attach to the local network at different ports

○ Ports are used by OS to distinguish services / apps all using the same physical connection
to the internet

○ Think of ports like apartment numbers, allowing mail sent to a shared building address
(IP) to be sorted into the correct destination unit (application)

Socket
Port 1

Socket
Port 2

app app

Socket API Operations

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections; (give
queue size)

ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

Using TCP Sockets
Client (host 1) Time Server (host 2)

request

reply

disconnect
4

1 1

2

3

4

connect

Using TCP Sockets (Continued)
Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: send

6: recv*
7: send
8: recv*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

10: recv*

12: close

Using UDP Sockets
Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: sendto

6: recvfrom*
7: sendto
8: recvfrom*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

10: recvfrom*

12: close

Client Program Outline

socket() // make socket
getaddrinfo() // server and port name

 // www.example.com:80
connect() // connect to server

send()
recv()
…
close()

// send request
// await reply [block]

 // do something with
data!

 // done, disconnect

Server Program Outline

socket() // make socket

getaddrinfo() // for port on this host
// associate port with socket

// prepare to accept connections

// wait for a connection [block]

bind()

listen()

accept()

…

recv()

…
send()

close()

// wait for request [block]

// send the reply

// eventually disconnect

Python Examples with socket
● Server

● Python socket documentation
● UDP socket example
● socketserver (a little overkill)

listener = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
listener.bind(server_address)

while True:
 try:
 connection, client_addr = listener.accept()
 try:
 connection.recv(n_bytes)
 finally:
 connection.close()
 except:
 listener.close()

socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
socket.connect(server_address)
socket.sendto(message, server_address)
socket.close();

● Client

https://docs.python.org/3.6/library/socket.html
https://www.studytonight.com/network-programming-in-python/working-with-udp-sockets
https://docs.python.org/3.6/library/socketserver.html

Java Examples with Socket & ServerSocket

• http://cs.lmu.edu/~ray/notes/javanetexamples/
• https://docs.oracle.com/javase/tutorial/net

working/datagrams/clientServer.html
• https://docs.oracle.com/javase/tutorial/net

working/sockets/index.html

ServerSocket listener = new
ServerSocket(9090); try {

while (true) {
Socket socket = listener.accept();
try {

socket.getInputStream();
} finally {

socket.close();
}

}
}
finally {

listener.close();
}

Socket socket = new Socket(server, 9090);
out =

new PrintWriter(socket.getOutputStream(), true);
socket.close();

● Server ● Client

http://cs.lmu.edu/~ray/notes/javanetexampl

HW1 Fundamentals

Bandwidth
● Bandwidth (data rate): The number of

bits that can be transmitted over a
period of time

○ Units of bits per second (bps)
○ Confusingly also used to refer to the

frequency range of a signal
■ In this case the units are given as hertz

(Hz)
● Throughput: The measured

performance of a system
○ Units of bits per second (bps)

● Bandwidth is a pipe and throughput is the
water

Latency
● Latency: How long it takes for a message to travel from one point in the

network to another
○ Units of seconds
○ Round trip time (RTT) defined as latency for message to travel from one point in the

network to another, then back to the starting point
● Latency can be calculated as:

○ Latency = Propagation + Transmit + Queue
○ Propagation = Distance / Speed Of Light (varies by medium)
○ Transmit = Size / Bandwidth

● Important: Talking about bit or message?

Bandwidth x Delay Product
● Product between bandwidth and delay

○ Units in bits (bps * s = b)
○ Delay generally measured as either one way latency, or RTT

■ Propagation Delay
○ Conceptually defines the maximum amount of data that can be “in-flight” at a given time

■ think the amount of water in a pipe

Example
● Consider a point to point link 50 km in length. At what bandwidth would

propagation delay (at a speed of 2 * 10^8 m/s) equal transmit delay for
100 byte packets?

● What about 512 byte packets?

Example
● Consider a point to point link 50 km in length. At what bandwidth would

propagation delay (at a speed of 2 * 10^8 m/s) equal transmit delay for
100 byte packets?

○ Propagation = Distance / Speed Of Light (varies by medium)
○ Transmit = Size / Bandwidth
○ Propagation delay = 50 * 10^3 m / (2 * 10^8 m/sec) = 250 μs
○ 100 * 8 = 800 bits -> 800 bits / 250 μs = 3.2 Mbps

● What about 512 byte packets?
○ 512 * 8 / 250 μs = 16.4 Mbps

Exercise
● Suppose a 128-kbps point-to-point link is set up between Earth and a

SpaceX colony on Mars. The distance from Earth to Mars (when they are
closest together) is approximately 55 Gm, and data travel over the link at
the speed of light (3 * 10^8 m/s).

○ Calculate the minimum RTT for the link.
○ Calculate the delay x bandwidth product for the link.
○ Say your aunt Betty takes a selfie on Olympus Mons, and sends the 5 Mbit picture to you

on Earth. How quickly after the picture is taken can you receive the image from Betty?

Exercise
● Suppose a 128-kbps point-to-point link is set up between Earth and a

SpaceX colony on Mars. The distance from Earth to Mars (when they are
closest together) is approximately 55 Gm, and data travel over the link at
the speed of light (3 * 10^8 m/s).

○ Calculate the minimum RTT for the link.
■ RTT = 2 * Propagation delay = 2 * 55 * 10 ^ 9 m / (3 * 10^8 m/s) = 2 * 184 = 368

seconds
○ Calculate the delay x bandwidth product for the link.

■ delay x bandwidth = 184 * 128 * 10^3 = 2.81 MB
○ Say your aunt Betty takes a selfie on Olympus Mons, and sends the 5 Mbit picture to you

on Earth. How quickly after the picture is taken can you receive the image from Betty?
■ Transmit delay for 5 MB = 41943040 bits / (128 * 10^3 bps) = 328 seconds. Total

time = transmit delay + propagation delay = 328 + 184 = 512 seconds.

Thanks for coming!

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th
Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

