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Where	we	are	in	the	Course	
•  More	fun	in	the	Network	Layer!	

– We’ve	covered	packet	forwarding		
–  Now	we’ll	learn	about	rouDng	

Physical	
Link	

Network	
Transport	
ApplicaDon	



Improving	on	the	Spanning	Tree	
•  Spanning	tree	provides	
basic	connecDvity	
–  e.g.,	some	path	BàC	

•  RouDng	uses	all	links	to	
find	“best”	paths	
–  e.g.,	use	BC,	BE,	and	CE	
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PerspecDve	on	Bandwidth	AllocaDon	
•  RouDng	allocates	network	bandwidth	adapDng	to	
failures;	other	mechanisms	used	at	other	Dmescales		
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Mechanism Timescale / Adaptation 
Load-sensitive routing Seconds / Traffic hotspots 

Routing Minutes / Equipment failures 

Traffic Engineering Hours / Network load 

Provisioning Months / Network customers 



Delivery	Models	
•  Different	rouDng	used	for	different	delivery	models	

CSE	461	University	of	Washington	 4	

		

Unicast	
(§5.2)	

MulDcast	
(§5.2.8)	

Anycast	
(§5.2.9)	

Broadcast	
(§5.2.7)	
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Goals	of	RouDng	Algorithms	
•  We	want	several	properDes	of	any	
rouDng	scheme:	

Property Meaning 
Correctness Finds paths that work 
Efficient paths Uses network bandwidth well 
Fair paths Doesn’t starve any nodes 
Fast convergence Recovers quickly after changes 
Scalability Works well as network grows large 
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Rules	of	RouDng	Algorithms	
•  Decentralized,	distributed	seang	

–  All	nodes	are	alike;	no	controller	
–  Nodes	only	know	what	they	learn	by	
exchanging	messages	with	neighbors		

–  Nodes	operate	concurrently		
–  May	be	node/link/message	failures	

		

Who’s	there?	
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Topic	
•  Defining	“best”	paths	with	link	costs	

–  These	are	shortest	path	routes	

Best?	
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What	are	“Best”	paths	anyhow?	
•  Many	possibiliDes:	

–  Latency,	avoid	circuitous	paths	
–  Bandwidth,	avoid	slow	links	
– Money,	avoid	expensive	links	
–  Hops,	to	reduce	switching	

•  But	only	consider	topology	
–  Ignore	workload,	e.g.,	hotspots	
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Shortest	Paths	
We’ll	approximate	“best”	by	a	cost	
funcDon	that	captures	the	factors	

–  Ogen	call	lowest	“shortest”	

1.  Assign	each	link	a	cost	(distance)	
2.  Define	best	path	between	each					

pair	of	nodes	as	the	path	that	has		
the	lowest	total	cost	(or	is	shortest)	

3.  Pick	randomly	to	any	break	Des	
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Shortest	Paths	(2)	
•  Find	the	shortest	path	A	à	E	

	 		
•  All	links	are	bidirecDonal,	with	
equal	costs	in	each	direcDon	
–  Can	extend	model	to	unequal									
costs	if	needed	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	

3	

3	



CSE	461	University	of	Washington	 11	

Shortest	Paths	(3)	
•  ABCE	is	a	shortest	path	
•  dist(ABCE)	=	4	+	2	+	1	=	7	

•  This	is	less	than:	
–  dist(ABE)	=	8	
–  dist(ABFE)	=	9	
–  dist(AE)	=	10	
–  dist(ABCDE)	=	10	
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Shortest	Paths	(4)	
•  OpDmality	property:	

– Subpaths	of	shortest	paths																
are	also	shortest	paths		

•  ABCE	is	a	shortest	path	
àSo	are	ABC,	AB,	BCE,	BC,	CE	
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Sink	Trees	
•  Sink	tree	for	a	desDnaDon	is									
the	union	of	all	shortest	paths				
towards	the	desDnaDon	
–  Similarly	source	tree	

•  Find	the	sink	tree	for	E	
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Sink	Trees	(2)	
•  ImplicaDons:	

–  Only	need	to	use	desDnaDon															
to	follow	shortest	paths	

–  Each	node	only	need	to	send															
to	the	next	hop	

•  Forwarding	table	at	a	node	
–  Lists	next	hop	for	each	desDnaDon	
–  RouDng	table	may	know	more	
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Topic	
•  How	to	compute	shortest	paths		
given	the	network	topology	
– With	Dijkstra’s	algorithm	

Source	tree	
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Edsger	W.	Dijkstra	(1930-2002)	
•  Famous	computer	scienDst	

–  Programming	languages	
–  Distributed	algorithms	
–  Program	verificaDon	

•  Dijkstra’s	algorithm,	1969	
–  Single-source	shortest	paths,	given	
network	with	non-negaDve	link	costs	

By	Hamilton	Richards,	CC-BY-SA-3.0,	via	Wikimedia	Commons	
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Dijkstra’s	Algorithm	
Algorithm:	
•  Mark	all	nodes	tentaDve,	set	distances	

from	source	to	0	(zero)	for	source,	and	
∞	(infinity)	for	all	other	nodes	

•  While	tentaDve	nodes	remain:	
–  Extract	N,	a	node	with	lowest	distance	
–  Add	link	to	N	to	the	shortest	path	tree	
–  Relax	the	distances	of	neighbors	of		N	by	
lowering	any	beper	distance	esDmates	



Dijkstra’s	Algorithm	(2)	
•  IniDalizaDon	
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Dijkstra’s	Algorithm	(3)	
•  Relax	around	A	
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Dijkstra’s	Algorithm	(4)	
•  Relax	around	B	
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Dijkstra’s	Algorithm	(5)	
•  Relax	around	C	
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Dijkstra’s	Algorithm	(6)	
•  Relax	around	G	(say)	
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Dijkstra’s	Algorithm	(7)	
•  Relax	around	F	(say)	
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Dijkstra’s	Algorithm	(8)	
•  Relax	around	E	
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Dijkstra’s	Algorithm	(9)	
•  Relax	around	D	
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Dijkstra’s	Algorithm	(10)	
•  Finally,	H	…	done	
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Dijkstra	Comments	
•  Finds	shortest	paths	in	order	of	

increasing	distance	from	source	
–  Leverages	opDmality	property	

•  RunDme	depends	on	efficiency	of	
extracDng	min-cost	node	
–  Superlinear	in	network	size	(grows	fast)	

•  Gives	complete	source/sink	tree	
–  More	than	needed	for	forwarding!	
–  But	requires	complete	topology		
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Distance	Vector	(DV)	approach	

Here’s	my	vector!	 Here’s	mine	
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Distance	Vector	RouDng	
•  Simple,	early	rouDng	approach	

–  Used	in	ARPANET,	and	RIP	

•  One	of	two	main	approaches	to	rouDng	
–  Distributed	version	of	Bellman-Ford	
–  Works,	but	very	slow	convergence						
ager	some	failures		

•  Link-state	algorithms	are	now					
typically	used	in	pracDce	
–  More	involved,	beper	behavior	
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Distance	Vector	Seang	
Each	node	computes	its	forwarding	table												
in	a	distributed	seang:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes	and	links	may	fail,	messages										
may	be	lost	
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Distance	Vector	Algorithm	
Each	node	maintains	a	vector	of	distances		
(and	next	hops)	to	all	desDnaDons	

	

1.  IniDalize	vector	with	0	(zero)	cost	to	
self,	∞	(infinity)	to	other	desDnaDons	

2.  Periodically	send	vector	to	neighbors	
3.  Update	vector	for	each	desDnaDon	by	

selecDng	the	shortest	distance	heard,	
ager	adding	cost	of	neighbor	link	
–  Use	the	best	neighbor	for	forwarding	



Distance	Vector	(2)	
•  Consider	from	the	point	of	view	of	node	A	

–  Can	only	talk	to	nodes	B	and	E	
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Distance	Vector	(3)	
•  First	exchange	with	B,	E;	learn	best	1-hop	routes	
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Distance	Vector	(4)	
•  Second	exchange;	learn	best	2-hop	routes	
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Distance	Vector	(4)	
•  Third	exchange;	learn	best	3-hop	routes	
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Distance	Vector	(5)	
•  Subsequent	exchanges;	converged	
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Distance	Vector	Dynamics	
•  Adding	routes:	

–  News	travels	one	hop	per	exchange	
•  Removing	routes	

– When	a	node	fails,	no	more	
exchanges,	other	nodes	forget	

•  But	parDDons	(unreachable	nodes			
in	divided	network)	are	a	problem	
–  “Count	to	infinity”	scenario	



DV	Dynamics	(2)	
•  Good	news	travels	quickly,	bad	news	slowly	(inferred)	
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“Count	to	infinity”	scenario	

Desired	convergence	

X	
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DV	Dynamics	(3)	
•  Various	heurisDcs	to	address	

–  e.g.,	“Split	horizon,	poison	
reverse”			(Don’t	send	route	back	to	
where												you	learned	it	from.)	

•  But	none	are	very	effecDve	
–  Link	state	now	favored	in	pracDce	
–  Except	when	very	resource-limited	
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Link-State	(LS)	approach	

Flood!	 …	then	compute	
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Link-State	RouKng	
•  One	of	two	approaches	to	rouKng	

–  Trades	more	computaKon	than	
distance	vector	for	beMer	dynamics		

•  Widely	used	in	pracKce	
–  Used	in	Internet/ARPANET	from	1979	
– Modern	networks	use	OSPF	and	IS-IS	
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Link-State	SeWng	
Nodes	compute	their	forwarding	table	in	the	
same	distributed	seWng	as	for	distance	vector:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes/links	may	fail,	messages	may	be	lost	
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Link-State	Algorithm	
Proceeds	in	two	phases:	
1.  Nodes	flood	topology	in	the	form	

of	link	state	packets	
–  Each	node	learns	full	topology	

2.  Each	node	computes	its	own	
forwarding	table	

–  By	running	Dijkstra	(or	equivalent)	
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Phase	1:	Topology	DisseminaKon	
•  Each	node	floods	link	state	packet	
(LSP)	that	describes	their	porKon		
of	the	topology	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

Seq. # 
A 10 
B 4 
C 1 
D 2 
F 2 

Node	E’s	LSP	
flooded	to	A,	B,	
C,	D,	and	F	



CSE	461	University	of	Washington	 6	

Phase	2:	Route	ComputaKon	
•  Each	node	has	full	topology	

–  By	combining	all	LSPs	

•  Each	node	simply	runs	Dijkstra	
–  Some	replicated	computaKon,	but						
finds	required	routes	directly	

–  Compile	forwarding	table	from	sink/
source	tree	

–  That’s	it	folks!	



Forwarding	Table	
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Handling	Changes	
•  On	change,	flood	updated	LSPs,	and	re-compute	routes	

–  E.g.,	nodes	adjacent	to	failed	link	or	node	iniKate	
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Handling	Changes	(2)	
•  Link	failure	

–  Both	nodes	noKce,	send	updated	LSPs	
–  Link	is	removed	from	topology	

•  Node	failure	
–  All	neighbors	noKce	a	link	has	failed	
–  Failed	node	can’t	update	its	own	LSP	
–  But	it	is	OK:	all	links	to	node	removed	
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Handling	Changes	(3)	
•  AddiKon	of	a	link	or	node	

–  Add	LSP	of	new	node	to	topology	
–  Old	LSPs	are	updated	with	new	link	

•  AddiKons	are	the	easy	case	…	



CSE	461	University	of	Washington	 11	

Link-State	ComplicaKons	
•  Things	that	can	go	wrong:	

–  Seq.	number	reaches	max,	or	is	corrupted	
–  Node	crashes	and	loses	seq.	number	
–  Network	parKKons	then	heals	

•  Strategy:	
–  Include	age	on	LSPs	and	forget	old	
informaKon	that	is	not	refreshed	

•  Much	of	the	complexity	is	due	to	
handling	corner	cases	(as	usual!)	



DV/LS	Comparison	
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Goal Distance Vector Link-State 

Correctness Distributed Bellman-Ford Replicated Dijkstra 

Efficient paths Approx. with shortest paths Approx. with shortest paths 

Fair paths Approx. with shortest paths Approx. with shortest paths 

Fast convergence Slow – many exchanges Fast – flood and compute 

Scalability Excellent – storage/compute Moderate – storage/compute 
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IS-IS	and	OSPF	Protocols	
•  Widely	used	in	large	enterprise					
and	ISP	networks	
–  IS-IS	=	Intermediate	System	to	
Intermediate	System	

–  OSPF	=	Open	Shortest	Path	First	

•  Link-state	protocol	with	many			
added	features	
–  E.g.,	“Areas”	for	scalability	
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Topic	
•  How	to	route	with	mulKple	parKes,	
each	with	their	own	rouKng	policies		
–  This	is	Internet-wide	BGP	rouKng	

ISP	A	 ISP	C	

DesKnaKon	

ISP	B	
Source	



Structure	of	the	Internet	
•  Networks	(ISPs,	CDNs,	etc.)	group	hosts	as	IP	prefixes	
•  Networks	are	richly	interconnected,	onen	using	IXPs		
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CDN	C	

Prefix	C1	

ISP	A	
Prefix	A1	

Prefix	A2	
Net	F	

Prefix	F1	

IXP	
IXP	

IXP	 IXP	

CDN	D	

Prefix	D1	

Net	E	

Prefix	E1	

Prefix	E2	

ISP	B	

Prefix	B1	
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Internet-wide	RouKng	Issues	
•  Two	problems	beyond	rouKng	
within	an	individual	network	

1.  Scaling	to	very	large	networks	
–  Techniques	of	IP	prefixes,	hierarchy,	
prefix	aggregaKon	

2.  IncorporaKng	policy	decisions	
–  LeWng	different	parKes	choose	their	
routes	to	suit	their	own	needs	 Yikes!	
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Effects	of	Independent	ParKes	
•  Each	party	selects	routes	
to	suit	its	own	interests	
–  e.g,	shortest	path	in	ISP	

•  What	path	will	be	chosen	
for	A2àB1	and	B1àA2?	
– What	is	the	best	path?	

Prefix	B2	

Prefix	A1	
ISP	A	 ISP	B	

Prefix	B1	

Prefix	A2	
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Effects	of	Independent	ParKes	(2)	
•  Selected	paths	are	longer	
than	overall	shortest	path	
–  And	symmetric	too!	

•  This	is	a	consequence	of	
independent	goals	and	
decisions,	not	hierarchy	 Prefix	B2	

Prefix	A1	
ISP	A	 ISP	B	

Prefix	B1	

Prefix	A2	
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RouKng	Policies	
•  Capture	the	goals	of	different	
parKes	–	could	be	anything	
–  E.g.,	Internet2	only	carries															
non-commercial	traffic	

•  Common	policies	we’ll	look	at:	
–  ISPs	give	TRANSIT	service	to	customers	
–  ISPs	give	PEER	service	to	each	other	
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RouKng	Policies	–	Transit	
•  One	party	(customer)	gets	TRANSIT	
service	from	another	party	(ISP)	
–  ISP	accepts	traffic	for	customer			
from	the	rest	of	Internet	

–  ISP	sends	traffic	from	customer							
to	the	rest	of	Internet	

–  Customer	pays	ISP	for	the	privilege	

Customer	1	

ISP	

Customer	2	

Rest	of	
Internet	
Non-	

customer	
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RouKng	Policies	–	Peer	
•  Both	party	(ISPs	in	example)	get	

PEER	service	from	each	other	
–  Each	ISP	accepts	traffic	from	the	
other	ISP	only	for	their	customers	

–  ISPs	do	not	carry	traffic	to	the	rest		
of	the	Internet	for	each	other	

–  ISPs	don’t	pay	each	other	

Customer	A1	

ISP	A	

Customer	A2	

Customer	B1	

ISP	B	

Customer	B2	
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RouKng	with	BGP	(Border	Gateway	Protocol)	
•  BGP	is	the	interdomain	rouKng	
protocol	used	in	the	Internet	
–  Path	vector,	a	kind	of	distance	vector	

ISP	A	
Prefix	A1	

Prefix	A2	Net	F	
Prefix	F1	

IXP	

ISP	B	
Prefix	B1	 Prefix	F1	via	ISP	

B,	Net	F	at	IXP	
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RouKng	with	BGP	(2)	
•  Different	parKes	like	ISPs	are	called					

AS	(Autonomous	Systems)	
•  Border	routers	of	ASes	announce						

BGP	routes	to	each	other	

•  Route	announcements	contain	an	IP	
prefix,	path	vector,	next	hop	
–  Path	vector	is	list	of	ASes	on	the	way							
to	the	prefix;	list	is	to	find	loops	

•  Route	announcements	move	in	the	
opposite	direcKon	to	traffic	



RouKng	with	BGP	(3)	
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Prefix	
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RouKng	with	BGP	(4)	
Policy	is	implemented	in	two	ways:	

	

1.  Border	routers	of	ISP	announce		
paths	only	to	other	parKes	who				
may	use	those	paths	
–  Filter	out	paths	others	can’t	use	

2.  Border	routers	of	ISP	select	the				
best	path	of	the	ones	they	hear								
in	any,	non-shortest	way	



RouKng	with	BGP	(5)	
•  TRANSIT:	AS1	says	[B,	(AS1,	AS3)],	[C,	(AS1,	AS4)]	to	AS2	
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RouKng	with	BGP	(6)	
•  CUSTOMER	(other	side	of	TRANSIT):	AS2	says	[A,	(AS2)]	to	AS1	
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RouKng	with	BGP	(7)	
•  PEER:	AS2	says	[A,	(AS2)]	to	AS3,	AS3	says	[B,	(AS3)]	to	AS2	
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RouKng	with	BGP	(8)	
•  AS2	hears	two	routes	to	B	(via	AS1,	AS3)	and	chooses	AS3	(Free!)		
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BGP	Thoughts	
•  Much	more	beyond	basics	to	explore!	

•  Policy	is	a	substanKal	factor	
–  Can	we	even	be	independent	decisions	
will	be	sensible	overall?	

•  Other	important	factors:	
–  Convergence	effects	
–  How	well	it	scales	
–  IntegraKon	with	intradomain	rouKng	
–  And	more	…	


