
Link Layer



Where we are in the Course

• Moving on up to the Link Layer!

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application



Scope of the Link Layer

• Concerns how to transfer messages over one or 
more connected links

• Messages are frames, of limited size
• Builds on the physical layer

CSE 461 University of Washington 3

Frame



In terms of layers …

CSE 461 University of Washington 4

Actual data path

Virtual data path

Network

Link

Physical



In terms of layers (2)

CSE 461 University of Washington 5

Actual data path

Virtual data path

Network

Link

Physical



Typical Implementation of Layers (2)

CSE 461 University of Washington 6



Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 7



Framing
Delimiting start/end of frames



Topic

• The Physical layer gives us a stream of bits. How do 
we interpret it as a sequence of frames?

CSE 461 University of Washington 9

…10110 …

Um?



Framing Methods

• We’ll look at:
• Byte count (motivation)

• Byte stuffing 

• Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11

CSE 461 University of Washington 10



Simple ideas?



Byte Count

• First try:
• Let’s start each frame with a length field!

• It’s simple, and hopefully good enough …

CSE 461 University of Washington 12



Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington 13



Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

CSE 461 University of Washington 14



Byte Stuffing

• Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Problem?

CSE 461 University of Washington 15



Byte Stuffing

• Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Complication: have to escape the escape code too!

CSE 461 University of Washington 16



Byte Stuffing (2)

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC

CSE 461 University of Washington 17



Byte Stuffing (3)

• Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington 18



Unstuffing

You see:

1. Solitary FLAG?

2. Solitary ESC?

3. ESC FLAG?

4. ESC ESC FLAG?

5. ESC ESC ESC FLAG?

6. ESC FLAG FLAG?



Unstuffing

You see:

1. Solitary FLAG? -> Start or end of packet

2. Solitary ESC? -> Bad packet!

3. ESC FLAG? -> remove ESC and pass FLAG through

4. ESC ESC FLAG? -> removed ESC and then start or end of packet

5. ESC ESC ESC FLAG? -> pass ESC FLAG through

6. ESC FLAG FLAG? -> pass FLAG through then start or end of packet



Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s

• On transmit, after five 1s in the data, insert a 0

• On receive, a 0 after five 1s is deleted 

CSE 461 University of Washington 21



Bit Stuffing (2)

• Example:

CSE 461 University of Washington 22

Transmitted bits
with stuffing

Data bits



Bit Stuffing (3)

• So how does it compare with byte stuffing?

CSE 461 University of Washington 23

Transmitted bits
with stuffing

Data bits



Link Example: PPP over SONET

• PPP is Point-to-Point Protocol

• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links

CSE 461 University of Washington 24



Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an 
IP packet over the link

CSE 461 University of Washington 25

Protocol stacks
PPP frames may be split over 

SONET payloads



Link Example: PPP over SONET (3)

• Framing uses byte stuffing 

• FLAG is 0x7E and ESC is 0x7D

CSE 461 University of Washington 26



Link Layer: Error detection and 
correction



Topic

• Some bits will be received in error due to noise. 
What can we do?

• Detect errors with codes
• Retransmit lost frames
• Correct errors with codes

•Reliability is a concern that cuts across the layers

CSE 461 University of Washington 28

Later



Problem – Noise may flip received bits 

CSE 461 University of Washington 29

Signal
0 0 0 0

11 1

0

0 0 0 0

11 1

0

0 0 0 0

11 1

0

Slightly
Noisy

Very
noisy



Approach – Add Redundancy 

• Error detection codes
• Add check bits to the message bits to let some errors be 

detected

• Error correction codes
• Add more check bits to let some errors be corrected

• Key issue is now to structure the code to detect many 
errors with few check bits and modest computation

CSE 461 University of Washington 30



• Ideas?



Motivating Example

• A simple code to handle errors:
• Send two copies! Error if different.

• How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

CSE 461 University of Washington 32



Motivating Example (2)

• We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental errors (will look at secure 

hashes later)

CSE 461 University of Washington 33



Using Error Codes

• Codeword consists of D data plus R check bits 
(=systematic block code)

• Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits

CSE 461 University of Washington 34

D R=fn(D)

Data bits Check bits



Using Error Codes (2)

• Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if 

R doesn’t match R’

CSE 461 University of Washington 35

D R’

Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

• For D data bits, R check bits:

• Randomly chosen codeword is unlikely to be correct; 
overhead is low

CSE 461 University of Washington 36

All
codewords

Correct
codewords



CSE 461 University of Washington 37

R.W. Hamming (1915-1998)

• Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

• “If the computer can tell when an error has 
occurred, surely there is a way of telling where 
the error is so the computer can correct the error 
itself” - Hamming

Source: IEEE GHN, © 2009 IEEE



Hamming Distance

• Hamming distance between two codes (D1 D2) is the 
number of bit flips needed to change D1 to D2

• Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-
strings) that cannot be detected

CSE 461 University of Washington 38



Hamming Distance (2)

• Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected

• Error correction:
• For a coding of distance 2d+1, up to d errors can always be 

corrected by mapping to the closest valid codeword

CSE 461 University of Washington 39



Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of 
the D bits

• Sum is modulo 2 or XOR

CSE 461 University of Washington 40



Parity Bit (2)

• How well does parity work?
• What is the distance of the code?
• How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 41



Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity

CSE 461 University of Washington 42

1500 bytes 16 bits



Internet Checksum

• Sum is defined in 1s complement arithmetic (must 
add back carries)

• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 43



CSE 461 University of Washington 44

Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------

ddf2 

220d 



CSE 461 University of Washington 45

Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf1 

ddf1 
+    2 
------

ddf3 

220c 

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum



CSE 461 University of Washington 46

Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd 
+    2 
------

ffff 

0000 



CSE 461 University of Washington 47

Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd 
+    2 
------

ffff 

0000 



Internet Checksum (6)

• How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 48



Cyclic Redundancy Check (CRC)

• Even stronger protection
• Given n data bits, generate k check bits such that the n+k 

bits are evenly divisible by a generator C 

• Example with numbers:
• n = 302, k = one digit, C = 3

CSE 461 University of Washington 49



CRCs (2)

• The catch:
• It’s based on mathematics of finite fields, in which “numbers” represent 

polynomials

• e.g, 10011010 is x
7

+ x
4

+ x
3

+ x
1

• What this means:
• We work with binary values and operate using modulo 2 arithmetic

CSE 461 University of Washington 50



CRCs (3)

• Send Procedure:

1. Extend the n data bits with k zeros

2. Divide by the generator value C

3. Keep remainder, ignore quotient

4. Adjust k check bits by remainder

• Receive Procedure:

1. Divide and check for zero remainder

CSE 461 University of Washington 51



CRCs (4)

CSE 461 University of Washington 52

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4 



CRCs (5)

CSE 461 University of Washington 53Plus



CRCs (6)

• Protection depend on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
• HD=4, detects up to triple bit errors

• Also odd number of errors 

• And bursts of up to k bits in error

• Not vulnerable to systematic errors like checksums

CSE 461 University of Washington 54



Why Error Correction is Hard

• If we had reliable check bits we could use them to 
narrow down  the position of the error

• Then correction would be easy

• But error could be in the check bits as well as the 
data bits!

• Data might even be correct 

CSE 461 University of Washington 55



Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming 
distance of at least 3

• Need ≥3 bit errors to change one valid codeword into 
another

• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct 
them by mapping an error to the closest valid 
codeword

• Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 56



Intuition (2)

• Visualization of code:

CSE 461 University of Washington 57

A

B

Valid
codeword

Error
codeword



Intuition (3)

• Visualization of code:

CSE 461 University of Washington 58

A

B

Valid
codeword

Error
codeword

Single 
bit error
from A

Three bit 
errors to 
get to B



Hamming Code

• Gives a method for constructing a code with a 
distance of 3

• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting 

with position 1
• Check bit in position p is parity of positions with a p term 

in their values

• Plus an easy way to correct [soon]

CSE 461 University of Washington 59



Hamming Code (2)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 60

_ _ _  _ _  _  _
1   2   3   4   5   6   7



Hamming Code (3)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 61

0 1 0  0 1  0  1

p1= 0+1+1 = 0,  p2= 0+0+1 = 1,  p4= 1+0+1 = 0

1   2   3   4   5   6   7



Hamming Code (4)

• To decode:
• Recompute check bits (with parity sum including the 

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington 62



Hamming Code (5)

• Example, continued

CSE 461 University of Washington 63

0 1 0  0 1  0  1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (6)

• Example, continued

CSE 461 University of Washington 64

0 1 0  0 1  0  1

p1= 0+0+1+1 = 0,   p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1   2   3   4   5   6   7



Hamming Code (7)

• Example, continued

CSE 461 University of Washington 65

0 1 0  0 1  1 1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (8)

• Example, continued

CSE 461 University of Washington 66

0 1 0  0 1  1 1

p1= 0+0+1+1 = 0,   p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1   2   3   4   5   6   7



Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 67

0  1  0  0  1  1 1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1

1   2   3   4   5   6   7



Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 68

0  1  0  0  1  1 1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1

1   2   3   4   5   6   7



Other Error Correction Codes

• Real codes are more involved than Hamming

• E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile
• Decode using Viterbi algorithm (which can use bit confidence 

values)

CSE 461 University of Washington 69



CSE 461 University of Washington 70

Other Codes (2) – Turbo Codes 
• Turbo Codes

• Evolution of convolutional codes
• Sends multiple sets of parity bits with payload
• Decodes sets together (e.g. Sudoku)
• Used in 3G and 4G cellular technologies

• Invented and patented by Claude Berrou
• Professor at École Nationale Supérieure des 

Télécommunications de Bretagne



CSE 461 University of Washington 71

Other Codes (3) – LDPC 
• Low Density Parity Check (§3.2.3)

• LDPC based on sparse matrices
• Decoded iteratively using a belief 

propagation algorithm

• Invented by Robert Gallager in 1963 
as part of his PhD thesis

• Promptly forgotten until 1996 … 

Source: IEEE GHN, © 2009 IEEE



CSE 461 University of Washington 72

More coding theory 
• This is a huge field. 
• See EE 505, 514, 515 for more info

− These are graduate classes
• Key points:

− Coding allows us to detect and correct bit errors 
received from the PHY

− It is very complicated. Abstract away with 
Hamming Distance 



Detection vs. Correction

• Which is better will depend on the pattern of errors. 
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?

CSE 461 University of Washington 73



Detection vs. Correction

• Which is better will depend on the pattern of errors. 
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
• It still depends! We need to know more about the errors

CSE 461 University of Washington 74



Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction: 
• Need ~10 check bits per message

• Overhead:

Error detection: 
• Need ~1 check bits per message plus 1000 bit retransmission 

• Overhead:

CSE 461 University of Washington 75



Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction: 
• Need >>100 check bits per message

• Overhead:

Error detection: 
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time

• Overhead:

CSE 461 University of Washington 76



Detection vs. Correction (4)

• Error correction: 
• Needed when errors are expected

• Or when no time for retransmission

• Error detection: 
• More efficient when errors are not expected

• And when errors are large when they do occur

CSE 461 University of Washington 77



Error Correction in Practice

• Heavily used in physical layer
• LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, power-line, …

• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for 
residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)

• Normally with an erasure error model

• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington 78



Link Layer: Retransmissions



Context on Reliability

• Where in the stack should we place reliability 
functions?

CSE 461 University of Washington 80

Physical

Link

Network

Transport

Application



Context on Reliability (2)

• Everywhere! It is a key issue
• Different layers contribute differently

CSE 461 University of Washington 81

Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application



So what do we do if a frame is corrupted?

• From sender?

• From receiver?



ARQ (Automatic Repeat reQuest)

• ARQ often used when errors are common or must 
be corrected

• E.g., WiFi, and TCP (later)

• Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with 

an ACK
• Sender automatically resends after a timeout, until an ACK 

is received

CSE 461 University of Washington 83



ARQ (2)

• Normal operation (no loss)

CSE 461 University of Washington 84

Frame

ACK
Timeout Time

Sender Receiver



ARQ (3)

• Loss and retransmission

CSE 461 University of Washington 85

ACK

Frame

Timeout Time

Sender Receiver

Frame

X



So What’s Tricky About ARQ?

CSE 461 University of Washington 86



Duplicates

• What happens if an ACK is lost?

CSE 461 University of Washington 87

X

Frame

ACK
Timeout

Sender Receiver



Duplicates (2)

• What happens if an ACK is lost?

CSE 461 University of Washington 88

Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver

New 
Frame??



Duplicates (3)

• Or the timeout is early?

CSE 461 University of Washington 89

ACK

Frame

Timeout

Sender Receiver



Duplicates (4)

• Or the timeout is early?

CSE 461 University of Washington 90

Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New 
Frame??



So What’s Tricky About ARQ?

• Two non-trivial issues:
• How long to set the timeout? 
• How to avoid accepting duplicate frames as new frames 

• Want performance in the common case and 
correctness always

• Ideas?

CSE 461 University of Washington 91



Timeouts

• Timeout should be:
• Not too big (link goes idle)

• Not too small (spurious resend)

• Fairly easy on a LAN
• Clear worst case, little variation

• Fairly difficult over the Internet
• Much variation, no obvious bound

• We’ll revisit this with TCP (later)

CSE 461 University of Washington 92



Sequence Numbers

• Frames and ACKs must both carry sequence 
numbers for correctness

• To distinguish the current frame from the next one, 
a single bit (two numbers) is sufficient

• Called Stop-and-Wait

CSE 461 University of Washington 93



Stop-and-Wait

• In the normal case:

CSE 461 University of Washington 94

Time

Sender Receiver



Stop-and-Wait (2)

• In the normal case:

CSE 461 University of Washington 95

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Stop-and-Wait (3)

• With ACK loss:

CSE 461 University of Washington 96

X

Frame 0

ACK 0
Timeout

Sender Receiver



Stop-and-Wait (4)

• With ACK loss:

CSE 461 University of Washington 97

Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a 
Resend!



Stop-and-Wait (5)

• With early timeout:

CSE 461 University of Washington 98

ACK 0

Frame 0

Timeout

Sender Receiver



Stop-and-Wait (6)

• With early timeout:

CSE 461 University of Washington 99

Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …



Limitation of Stop-and-Wait

• It allows only a single frame to be outstanding from 
the sender:

• Good for LAN, not efficient for high BD

• Ex: R=1 Mbps, D = 50 ms
• How many frames/sec? If R=10 Mbps?

CSE 461 University of Washington 100



Sliding Window

• Generalization of stop-and-wait
• Allows W frames to be outstanding
• Can send W frames per RTT (=2D)

• Various options for numbering frames/ACKs and handling loss
• Will look at along with TCP (later)

CSE 461 University of Washington 101



Multiple Access



Topic

• Multiplexing is the network word for the sharing of a resource

• What are some obvious ways to multiple a resource?

CSE 461 University of Washington 103



Topic

• Multiplexing is the network word for the sharing of a resource

• Classic scenario is sharing a link among different users
• Time Division Multiplexing (TDM)

• Frequency Division Multiplexing (FDM)

CSE 461 University of Washington 104



Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule

CSE 461 University of Washington 105

2 2 2 2



Frequency Division Multiplexing (FDM)

• Put different users on different frequency bands

CSE 461 University of Washington 106

Overall FDM channel



TDM versus FDM

• Tradeoffs?

CSE 461 University of Washington 107



TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the 
time; in FDM, a user sends at a low rate all the time 

CSE 461 University of Washington 108

Rate

Time
FDM

TDM



TDM/FDM Usage

• Statically divide a resource
• Suited for continuous traffic, fixed number of users

• Widely used in telecommunications
• TV and radio stations (FDM)
• GSM (2G cellular) allocates calls using TDM within FDM

CSE 461 University of Washington 109



Multiplexing Network Traffic

• Network traffic is bursty
• ON/OFF sources 
• Load varies greatly over time

CSE 461 University of Washington 110

Rate

Time
Rate

Time

R

R



Multiplexing Network Traffic (2)

• Network traffic is bursty
• Inefficient to always allocate user their ON needs with 

TDM/FDM

CSE 461 University of Washington 111

Rate

Time
Rate

Time

R

R



Multiplexing Network Traffic (3)

• Multiple access schemes multiplex users according 
to demands – for gains of statistical multiplexing

CSE 461 University of Washington 112

Rate

Time
Rate

Time

Rate

Time

R

R

R’<2R

Two users, each need R
Together they need R’ < 2R



How to control?

Two classes of multiple access algorithms: Centralized and distributed

• Centralized: Use a privileged “Scheduler” to pick who gets to transmit 
and when.

• Positives: Scales well, usually efficient.
• Negatives: Requirements management, fairness
• Examples: Cellular networks (tower coordinates)

• Distributed: Have all participants “figure it out” through some 
mechanism.

• Positives: Operates well under low load, easy to set up, equality
• Negatives: Scaling is really hard, 
• Examples: Wifi networks



Distributed (random) Access

• How do nodes share a single link? Who sends when, 
e.g., in WiFI?

• Explore with a simple model

• Assume no-one is in charge
• Distributed system

CSE 461 University of Washington 114



Distributed (random) Access (2)

• We will explore random multiple access control
(MAC) protocols

• This is the basis for classic Ethernet
• Remember: data traffic is bursty

CSE 461 University of Washington 115

Zzzz..Busy! Ho hum



CSE 461 University of Washington 116

ALOHA Network

• Seminal computer network 
connecting the Hawaiian        
islands in the late 1960s

• When should nodes send?
• A new protocol was devised by 

Norm Abramson …
Hawaii



ALOHA Protocol

• Simple idea:
• Node just sends when it has traffic. 
• If there was a collision (no ACK received) then wait a 

random time and resend

• That’s it!

CSE 461 University of Washington 117



CSE 461 University of Washington 118

ALOHA Protocol (2)

• Some frames will 
be lost, but many 
may get through…

• Limitations?



ALOHA Protocol (3)

• Simple, decentralized protocol that works well 
under low load!

• Not efficient under high load
• Analysis shows at most 18% efficiency

• Improvement: divide time into slots and efficiency goes up to 36%

• We’ll look at other improvements

CSE 461 University of Washington 119



CSE 461 University of Washington 120

Classic Ethernet 
• ALOHA inspired Bob Metcalfe to 

invent Ethernet for LANs in 1973
• Nodes share 10 Mbps coaxial cable
• Hugely popular in 1980s, 1990s

: © 2009 IEEE



CSMA (Carrier Sense Multiple Access)

• Improve ALOHA by listening for activity before we 
send (Doh!)

• Can do easily with wires, not wireless

• So does this eliminate collisions?
• Why or why not?

CSE 461 University of Washington 121



CSMA (2)

• Still possible to listen and hear nothing when 
another node is sending because of delay

CSE 461 University of Washington 122



CSMA (3)

• CSMA is a good defense against collisions only when 
BD is small

CSE 461 University of Washington 123

X



CSMA/CD (with Collision Detection)

• Can reduce the cost of collisions by detecting them 
and aborting (Jam) the rest of the frame time

• Again, we can do this with wires

CSE 461 University of Washington 124

X X X X X X X XJam! Jam!



CSMA/CD Complications

• Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?

CSE 461 University of Washington 125

X



CSMA/CD Complications

• Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?
• Time window in which a node may hear of a collision 

(transmission + jam) is 2D seconds

CSE 461 University of Washington 126

X



CSMA/CD Complications (2)

• Impose a minimum frame length of 2D seconds
• So node can’t finish before collision
• Ethernet minimum frame is 64 bytes – Also sets maximum 

network length (500m w/ coax, 100m w/ Twisted Pair)

CSE 461 University of Washington 127

X



CSMA “Persistence”

• What should a node do if another node is sending?

• Idea: Wait until it is done, and send 

CSE 461 University of Washington 128

What now?



CSMA “Persistence” (2)

• Problem is that multiple waiting nodes will queue 
up then collide

• More load, more of a problem

CSE 461 University of Washington 129

Now! Now!Uh oh



CSMA “Persistence” (2)

• Problem is that multiple waiting nodes will queue 
up then collide

• Ideas?

CSE 461 University of Washington 130

Now! Now!Uh oh



CSMA “Persistence” (3)

• Intuition for a better solution
• If there are N queued senders, we want each to send next 

with probability 1/N

CSE 461 University of Washington 131

Send p=½WhewSend p=½



Binary Exponential Backoff (BEB)

• Cleverly estimates the probability
• 1st collision, wait 0 or 1 frame times
• 2nd collision, wait from 0 to 3 times
• 3rd collision, wait from 0 to 7 times …

• BEB doubles interval for each successive collision
• Quickly gets large enough to work
• Very efficient in practice

CSE 461 University of Washington 132



Classic Ethernet, or IEEE 802.3

• Most popular LAN of the 1980s, 1990s
• 10 Mbps over shared coaxial cable, with baseband signals
• Multiple access with “1-persistent CSMA/CD with BEB”

CSE 461 University of Washington 133



Ethernet Frame Format

• Has addresses to identify the sender and receiver

• CRC-32 for error detection; no ACKs or 
retransmission

• Start of frame identified with physical layer 
preamble Packet from Network layer (IP)



Modern Ethernet

• Based on switches, not multiple access, but still 
called Ethernet

• We’ll get to it in a later segment

CSE 461 University of Washington 135

Switch

Twisted pair

Switch ports



Topic

• How do wireless nodes share a single link? (Yes, this 
is WiFi!)

• Build on our simple, wired model

CSE 461 University of Washington 136

Send? Send?



Wireless Complications

• Wireless is more complicated than the wired case 
(Surprise!)

1. Media is infinite – can’t Carrier Sense
2. Nodes can’t hear while sending – can’t Collision Detect 

CSE 461 University of Washington 137

≠ CSMA/CD



No CS: Different Coverage Areas

• Wireless signal is broadcast and received nearby, 
where there is sufficient SNR

CSE 461 University of Washington 138



No CS: Hidden Terminals

• Nodes A and C are hidden terminals when sending 
to B

• Can’t hear each other (to coordinate) yet collide at B
• We want to avoid the inefficiency of collisions

CSE 461 University of Washington 139



No CS: Exposed Terminals

• B and C are exposed terminals when sending to A 
and D

• Can hear each other yet don’t collide at receivers A and D
• We want to send concurrently to increase performance

CSE 461 University of Washington 140



Nodes Can’t Hear While Sending

• With wires, detecting collisions (and aborting) 
lowers their cost

• More wasted time with wireless

CSE 461 University of Washington 141

Time XXXXXXXXX

XXXXXXXXX

Wireless
Collision

ResendX

X

Wired
Collision

Resend



Wireless Problems:

• Ideas?



MACA (Multiple Access with Collision 
Avoidance) 
• MACA uses a short handshake instead of CSMA (Karn, 1990)

• 802.11 uses a refinement of MACA (later) 

• Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)

3. Sender transmits the frame while nodes hearing the CTS stay silent

• Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington 143



MACA – Hidden Terminals

• A     B with hidden terminal C
1. A sends RTS, to B 

CSE 461 University of Washington 144

DCBA
RTS



MACA – Hidden Terminals (2)

• A B with hidden terminal C
2. B sends CTS, to A, and C too 

CSE 461 University of Washington 145

DCBA
RTS

CTSCTS

Alert!



MACA – Hidden Terminals (3)

• A B with hidden terminal C
3. A sends frame while C defers

CSE 461 University of Washington 146

Frame

Quiet...



MACA – Exposed Terminals

• B A, C D as exposed terminals
• B and C send RTS to A and D 

CSE 461 University of Washington 147

DCBA
RTSRTS



MACA – Exposed Terminals (2)

• B A, C D as exposed terminals
• A and D send CTS to B and C 

CSE 461 University of Washington 148

DCBA
RTSRTS

CTSCTS

All OKAll OK



MACA – Exposed Terminals (3)

• B A, C D as exposed terminals
• A and D send CTS to B and C 

CSE 461 University of Washington 149

DCBA
FrameFrame



MACA

• Assumptions? Where does this break?



CSE 461 University of Washington 151

802.11, or WiFi

• Very popular wireless LAN started 
in the 1990s

• Clients get connectivity from a 
(wired) AP (Access Point)

• It’s a multi-access problem 

• Various flavors have been 
developed over time

• Faster, more features 

Access
Point

Client

To Network



802.11 Physical Layer

• Uses 20/40 MHz channels on ISM (unlicensed) bands
• 802.11b/g/n on 2.4 GHz

• 802.11 a/n on 5 GHz

• OFDM modulation (except legacy 802.11b)
• Different amplitudes/phases for varying SNRs

• Rates from 6 to 54 Mbps  plus error correction

• 802.11n uses multiple antennas
• Lots of fun tricks here

CSE 461 University of Washington 152



802.11 Link Layer

• Multiple access uses CSMA/CA (next); RTS/CTS optional 
• Frames are ACKed and retransmitted with ARQ (why?)
• Funky addressing (three addresses!) due to AP
• Errors are detected with a 32-bit CRC
• Many, many features (e.g., encryption, power save)

CSE 461 University of Washington 153

Packet from Network layer (IP)



802.11 CSMA/CA for Multiple Access

• Still using BEB! 

CSE 461 University of Washington 154

Time

Send?

Send?



Centralized MAC: Cellular

• Spectrum suddenly very very scarce
• We can’t waste all of it sending JAMs

• We have QoS requirements
• Can’t be as loose with expectations

• Can’t have traffic fail

• We also have client/server
• Centralized control

• Not peer-to-peer/decentralized



GSM MAC

• FDMA/TDMA

• Use one channel for coordination – Random access w/BEB (no CSMA, 
can’t detect)

• Use other channels for traffic
• Dedicated channel for QoS



Link Layer: Switching



Topic

• How do we connect nodes with a switch instead of 
multiple access

• Uses multiple links/wires 
• Basis of modern (switched) Ethernet

CSE 461 University of Washington 158

Switch



Switched Ethernet

• Hosts are wired to Ethernet switches with twisted 
pair

• Switch serves to connect the hosts
• Wires usually run to a closet

CSE 461 University of Washington 159

Switch

Twisted pair

Switch ports



CSE 461 University of Washington 160

What’s in the box?
• Remember from protocol layers:

Network

Link

Network

Link

Link Link

Physical PhysicalHub, or
repeater

Switch

Router

All look like this:



Inside a Hub

• All ports are wired together; more convenient and 
reliable than a single shared wire

CSE 461 University of Washington 161

↔



Inside a Repeater

• All inputs are connected; then amplified before 
going out

CSE 461 University of Washington 162

↔



Inside a Switch

• Uses frame addresses (MAC addresses in Ethernet) 
to connect input port to the right output port; 
multiple frames may be switched in parallel

CSE 461 University of Washington 163

Fabric

. . .

1
2

3

N



. . .

1
2

3

N

Inside a Switch (2)

• Port may be used for both input and output (full-
duplex)

• Just send, no multiple access protocol

164

1 → 4
and

2 → 3



Inside a Switch (3)

• Need buffers for multiple inputs to send to one 
output

CSE 461 University of Washington 165

. . .

. . .

. . . . . .

Input Buffer Output BufferFabric

Input Output



Inside a Switch (4)

• Sustained overload will fill buffer and lead to frame 
loss

CSE 461 University of Washington 166

. . .

. . .

. . . . . .

Input Buffer Output BufferFabric

Input Output

XXX

Loss!



Advantages of Switches

• Switches and hubs (mostly switches) have replaced 
the shared cable of classic Ethernet

• Convenient to run wires to one location
• More reliable; wire cut is not a single point of failure that 

is hard to find

• Switches offer scalable performance
• E.g., 100 Mbps per port instead of 100 Mbps for all nodes 

of shared cable / hub

CSE 461 University of Washington 167



Switch Forwarding

• Switch needs to find the right output port for the 
destination address in the Ethernet frame. How?

• Link-level, don’t look at IP

. . .

. . .

. . . . . .

Source

Destination

Ethernet Frame



Switch Forwarding

• Ideas?

. . .

. . .

. . . . . .

Source

Destination

Ethernet Frame



Backward Learning

• Switch forwards frames with a port/address table as follows:
1. To fill the table, it looks at the source address of input frames

2. To forward, it sends to the port, or else broadcasts to all ports

CSE 461 University of Washington 170



Backward Learning (2)

• 1: A sends to D

CSE 461 University of Washington 171

Switch

D

Address Port

A

B

C

D



Backward Learning (3)

• 2: D sends to A

CSE 461 University of Washington 172

Switch

D

Address Port

A 1

B

C

D



Backward Learning (4)

• 3: A sends to D

CSE 461 University of Washington 173

Address Port

A 1

B

C

D 4

Switch

D



Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs, 
e.g., A -> D then D -> A 

CSE 461 University of Washington 174

Switch



Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs, 
e.g., A -> D then D -> A 

CSE 461 University of Washington 175

Switch

Problems?



CSE 461 University of Washington 176

Problem – Forwarding Loops 

• May have a loop in the topology
• Redundancy in case of failures
• Or a simple mistake

• Want LAN switches to “just work”
• Plug-and-play, no changes to hosts
• But loops cause a problem …

Redundant 
Links



CSE 461 University of Washington 177

Forwarding Loops (2) 
• Suppose the network is started and A 

sends to F. What happens?

Left / Right

A B

C

D

E F



CSE 461 University of Washington 178

Forwarding Loops (3) 
• Suppose the network is started and A sends to F. 

What happens?
• A → C → B, D-left, D-right

• D-left → C-right, E, F

• D-right → C-left, E, F

• C-right → D-left, A, B

• C-left → D-right, A, B

• D-left → …

• D-right → …

Left / Right

A B

C

D

E F



Spanning Tree Solution

• Switches collectively find a spanning tree for the 
topology

• A subset of links that is a tree (no loops) and reaches all 
switches

• They switches forward as normal on the spanning tree
• Broadcasts will go up to the root of the tree and down all 

the branches

CSE 461 University of Washington 179



Spanning Tree (2)

CSE 461 University of Washington 180

Topology One ST Another ST



Spanning Tree (3)

CSE 461 University of Washington 181

Topology One ST Another ST

Root



Spanning Tree Algorithm

• Rules of the distributed game:
• All switches run the same algorithm

• They start with no information

• Operate in parallel and send messages

• Always search for the best solution

• Ensures a highly robust solution
• Any topology, with no configuration

• Adapts to link/switch failures, …

CSE 461 University of Washington 182



CSE 461 University of Washington 183

Radia Perlman (1952–)

• Key early work on routing protocols
• Routing in the ARPANET

• Spanning Tree for switches (next)

• Link-state routing (later)

• Worked at Digital Equipment Corp (DEC)

• Now focused on network security



Spanning Tree Algorithm (2)

• Outline:
1. Elect a root node of the tree (switch with the lowest address)

2. Grow tree as shortest distances from the root (using lowest address to 
break distance ties)

3. Turn off ports for forwarding if they aren’t on the spanning tree

CSE 461 University of Washington 184



Spanning Tree Algorithm (3)

• Details:
• Each switch initially believes it is the root of the tree
• Each switch sends periodic updates to neighbors with:

• Its address, address of the root, and distance (in hops) to root
• Short-circuit when topology changes

• Switches favors ports with shorter distances to lowest root
• Uses lowest address as a tie for distances

CSE 461 University of Washington 185

C

Hi, I’m C, the root is A, it’s 2 hops away or (C, A, 2)



CSE 461 University of Washington 186

Spanning Tree Example
• 1st round, sending:

• A sends (A, A, 0) to say it is root

• B, C, D, E, and F do likewise

• 1st round, receiving:
• A still thinks is it (A, A, 0)

• B still thinks (B, B, 0)

• C updates to (C, A, 1)

• D updates to (D, C, 1)

• E updates to (E, A, 1)

• F updates to (F, B, 1)

A,A,0 B,B,0

C,C,0

D,D,0

E,E,0 F,F,0



CSE 461 University of Washington 187

Spanning Tree Example (2)
• 2nd round, sending

• Nodes send their updated state

• 2nd round receiving:
• A remains (A, A, 0)

• B updates to (B, A, 2) via C

• C remains (C, A, 1)

• D updates to (D, A, 2) via C

• E remains (E, A, 1)

• F remains (F, B, 1)

A,A,0 B,B,0

C,A,1

D,C,1

E,A,1 F,B,1



CSE 461 University of Washington 188

Spanning Tree Example (3)
• 3rd round, sending

• Nodes send their updated state

• 3rd round receiving:
• A remains (A, A, 0)

• B remains (B, A, 2) via C

• C remains (C, A, 1)

• D remains (D, A, 2) via C-left

• E remains (E, A, 1)

• F updates to (F, A, 3) via B

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,B,1



CSE 461 University of Washington 189

Spanning Tree Example (4)
• 4th round

• Steady-state has been reached
• Nodes turn off forwarding that  is 

not on the spanning tree

• Algorithm continues to run
• Adapts by timing out information
• E.g., if A fails, other nodes forget it, 

and B will become the new root

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3



CSE 461 University of Washington 190

Spanning Tree Example (5)
• Forwarding  proceeds as usual on the ST

• Initially D sends to F:

• And F sends back to D:

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3



CSE 461 University of Washington 191

Spanning Tree Example (6)
• Forwarding  proceeds as usual on the ST

• Initially D sends to F:
• D → C-left

• C → A, B 

• A → E

• B → F

• And F sends back to D:
• F → B

• B → C

• C → D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3



CSE 461 University of Washington 192

Spanning Tree Example (6)
• Forwarding  proceeds as usual on the ST

• Initially D sends to F:
• D → C-left

• C → A, B 

• A → E

• B → F

• And F sends back to D:
• F → B

• B → C

• C → D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

Problems?



Link Layer: Software Defined 
Networking



Topic

• How do we scale these networks up?
• Answer 1: Network of networks, a.k.a. The Internet
• Answer 2: Ah, just kinda hope spanning tree works?

CSE 461 University of Washington 194

SwitchSwitch Switch



Rise of the Datacenter

CSE 461 University of Washington 195



Datacenter Networking

CSE 461 University of Washington 196



Scaling the Link Layer

• Fundamentally, it’s hard to scale distributed algorithms

⚫ Exacerbated when failures become common

⚫ Nodes go down, gotta run spanning tree again…

⚫ If nodes go down faster than spanning tree resolves, we get race conditions

⚫ If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 197



Software Defined Networking (SDN)

• Core idea: stop being a distributed system
⚫ Centralize the operation of the network

⚫ Create a “controller” that manages the network

⚫ Push new code, state, and configuration from “controller” to switches

⚫ Run link state with a global view of the network rather than in a distributed 
fashion.

⚫ Allows for “global” policies to be enforced.

⚫ Can resolve failures in more robust, faster manners

⚫ Problems?

CSE 461 University of Washington 198



SDN – Problem 1

• Problem: How do we talk to the switches if there’s no network?

⚫ Seems a little chicken-and-egg

⚫ Nodes go down, gotta run spanning tree again…

⚫ If nodes go down faster than spanning tree resolves, we get race conditions

⚫ If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 199



SDN – Control and Data Planes

CSE 461 University of Washington 200



SDN – Problem 2

• Problem: How do we efficiently run algorithms on switches?  

⚫ These are extremely time-sensitive boxes

⚫ Gotta move the packets!

⚫ Need to be able to support

⚫ Fast packet handling

⚫ Quick route changes

⚫ Long-term policy updates 

• Ideas?

CSE 461 University of Washington 201



SDN – OpenFlow

CSE 461 University of Washington 202

Control Program A Control Program B

Controller

Packet

Forwarding 

Packet

Forwarding 

Packet

Forwarding 

Flow

Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 

add header s, and send to ports 5,6”



SDN – OpenFlow 

• Two different classes of programmability

• At Controller 

⚫ Can be heavy processing algorithms

⚫ Results in messages that update switch flow table

• At switch

⚫ Local flow table

⚫ Built from basic set of networking primitives

⚫ Allows for fast operation

CSE 461 University of Washington 203



SDN – Timescales

CSE 461 University of Washington 204

Data Control Management

Time-scale Packet (nsec) Event (10 msec 
to sec)

Human (min to 
hours)

Location Linecard 
hardware

Router software Humans or 
scripts



SDN – OpenFlow

CSE 461 University of Washington 205

Control Program A Control Program B

Controller

Packet

Forwarding 

Packet

Forwarding 

Packet

Forwarding 

Flow

Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 

add header s, and send to ports 5,6”



SDN – Key outputs 

• Simplify network design and implementation?

⚫ Sorta. Kinda pushed the complexity around if anything

• However...

⚫ Does enable code reuse and libraries

⚫ Does standardize and simplify deployment of rules to switches

⚫ Allows for fast operation

CSE 461 University of Washington 206


