CSE 461: Final Review

Autumn 2022

Administrivia

Latest due:

- Dec 12th
 - Project 3
- Dec 8th
 - Everything else

• Please fill out the course evaluation form

- Thu, Dec 15th 8:30 10:20 AM
 - Final Exam

Final Review Section

- Today: A brief review of lecture materials
 - Concepts, Protocols, Algorithms, ...
- What **YOU** should do after this section and before the exam:
 - Go through the lecture slides
 - Think about the **problems** that each protocol/algorithm tries to solve
 - Pros and cons of current approaches?
 - Any other possible solutions?
 - What has not been solved yet?

461

Physical Layer

Link Layer

- Network Layer
- Transport Layer
- Application Layer

• (QoS)

Network Layer

- Network Service Models
- IP Address and Forwarding
- DHCP, ARP, ICMP
- NAT, IPv6
- Routing Algorithms
- BGP

Link Layer

- Multiplexing: Time Division (TDM) / Frequency Division (FDM)
- Multiple Access: ALOHA, CSMA/CD, BEB
- Wireless: Hidden/Exposed Terminal Problem, RTS/CTS
- Switching: Backward Learning
 - Forwarding Loop? -> Spanning Tree Algorithm!
- Software Defined Networking (SDN)
 - Rising of Datacenter Networks
 - Separation of Control Plane and Data Plane

Motivation

- What does the network layer do?
 - Connect different networks (send packets over multiple networks)

- Why do we need the network layer?
 - Switches don't scale to large networks
 - Switches don't work across more than one link layer technology
 - Switches don't give much traffic control

Network Service Models

Datagram Model

- Connectionless service
- Packets contain destination address
- Routers looks up address in its forwarding table to determine next hop
- Example: IP

Virtual Circuits

- Connection-oriented service
- Connection establishment \rightarrow data transfer \rightarrow connection teardown
- Packets contain label for circuit
- Router looks up circuit in forwarding table to determine next hop
- Example: MPLS

Both of them use Store-and-Forward packet switching

Internetworking - IP

- How do we connect different networks together?
- IP Internet Protocol
- Lowest Common Denominator
 - Asks little of lower-layer networks
 - Gives little as a higher layer service

IP Addresses Prefix and Forwarding

- IP prefix a.b.c.d/L
 - Represents addresses that have the same first L bits
 - e.g. 128.13.0.0/16 -> all 65536 addresses between 128.13.0.0 to 128.13.255.255
 - e.g. 18.31.0.0/32 -> 18.31.0.0 (only one address)

• Longest Matching Prefix

 find the longest prefix that contains the destination address, i.e., the most specific entry

IP Addresses Prefix and Forwarding

Which of the following prefix splits the address space 128.64.24.0/25 in half.

- a. 128.64.24.128/26
- b. 128.64.24.64/26
- c. 128.64.24.128/27
- d. 128.64.24.0/26

IP Addresses Prefix and Forwarding

Which of the following prefix splits the address space 128.64.24.0/25 in half. 128.64.24.0/25: 128.64.24.0000 0000 - 128.64.24.0111 1111 Half: 128.64.24.0100 0000

- a. 128.64.24.128/26
- **10**00 0000
- a. 128.64.24.64/26
- **01**00 0000
- a. 128.64.24.128/27
- **100**0 0000
- a. 128.64.24.0/26

0000 0000

DHCP - Dynamic Host Configuration Protocol

- Bootstrapping problem
- Leases IP address to nodes
- UDP
- Also setup other parameters:
 - DNS server
 - IP address of local router
 - Network prefix

Which of the following is false about DHCP?

- DHCP is a client-server application that uses TCP.
- To get an IP address, a node must first send a broadcast message to the network
- A node can renew an existing lease by sending a REQUEST and receiving an ACK.
- DHCP can also be used to get the local DNS server address.

ARP - Address Resolution Protocol

- MAC is needed to send a frame over the local link
- ARP to map an IP to MAC
- Sits on top of link layer

Which of the following is false about ARP?

- ARP is used to fill in the Destination Ethernet address in a packet header.
- ARP involves a central server broadcasting link layer addresses to other nodes.
- ARP is used to map a local IP address to its link layer address.
- ARP is replaced by NDP (Neighbor Discovery Protocol) in IPV6.

ICMP - Internet Control Message Protocol

- Provides error reporting and testing
- Companion protocol to IP
- Traceroute, Ping

In which of the following cases will an ICMP error report NOT be sent to the source IP?

- Message does not reach destination within the TTL specified in header.
- The destination is unreachable.
- The fragment is bigger than the MTU (Maximum Transmission Unit)
- A packet is lost in the network and needs to be retransmitted.

NAT - Network Address Translation

- One solution to IPv4 address exhaustion
- Map many private IP to one public IP, with different port number
- True/False?: NAT is many to one. many public IPs are translated to 1 private IP so

that hosts can talk to home routers.

What host thinks	What ISP thinks
Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500
192.168.1.13 : 1234	44.25.80.3 : 1501
192.168.2.20 : 1234	44.25.80.3 : 1502

IPv6

- A much better solution to IPv4 address exhaustion
- Uses 128-bit addresses, with lots of other changes
- IPv6 version protocols: NDP -> ARP, SLAAC -> DHCP
- Problem: being incompatible with IPV4. Solution: Tunnelling

Tunneling Which of the following is false about tunneling?

- Setup complexity is high
- packet size increases when using a tunnel
- Adding tunnels as a single link increases routing optimization
- Added layer of security is gained from the use of encrypted tunnels

Routing

- The process of deciding in which direction to send traffic
- Delivery models: unicast, broadcast, multicast, anycast
- Goals: correctness, efficient paths, fair paths, fast convergence, scalability
- Rules: decentralized, distributed setting

Techniques to Scale Routing

Hierarchical Routing

 Route first to the region, then to the IP prefix within the region

IP Prefix Aggregation and Subnets

- Adjusting the size of IP prefixes
 - Internally split one large prefix
 - Externally join multiple IP prefixes

Best Path Routing

Distance Vector Routing

Each node maintains a vector of distances (and next hops) to all destinations.

Sometimes doesn't perform very well: count-to-infinity scenario Link State Routing (widely used)

Phase 1. **Topology Dissemination**: Nodes flood topology

Phase 2. **Route Computation**: running Dijkstra algorithm (or equivalent)

Algorithm details available in lecture slides

BGP - Border Gateway Protocol

- Internet-wide routing between ISPs (ASes)
 - Each has their own policy decisions
- Peer and Transit (Customer) relationship
- Border routers of ISPs announce BGP routes only to other parties who may use those paths.
- Border routers of ISPs select the best path of the ones they hear in any, non-shortest way

BGP example

- Transit (ISP & Customer)
 - ISP announce everything it can reach to its customer
 - AS1 to AS2: you can send packet to AS4 through me
 - Customer ISP only announce its customers to ISP
 - AS2 to AS1: you can send packet to A through me
- Peer (ISP 1 & ISP 2)
 - ISP 1 only announces its customer to ISP 2
 - AS2 to AS3: you can send packet to A through me

Transport Layer

- Service Models
- TCP vs UDP
- TCP Connections
- Flow Control and Sliding Window
- TCP Congestion Control
- Newer TCP Implementations

Service Models

- Transport Layer Services
 - Datagrams (UDP): Unreliable Messages
 - Streams (TCP): Reliable Bytestreams

TCP vs UDP Which of the following statements about TCP is false?

- Unlike UDP, a three-way handshake is used to set up a TCP connection.
- Similar to UDP, TCP can retransmit packets.
- Pipelining can improve performance while maintaining reliability.
- Connection release is symmetric: both sides shutdown independently

Flow Control - Sliding Window Protocol

- Receiver sends ACK upon receiving packets
 - Go-Back-N (p1 part b)
 - Selective Repeat
 - Receiver passes data to app in order
 - Buffers out-of-order segments to reduce retransmissions
 - ACK highest in-order segment
- Selective Retransmission on sender's side

Flow Control - ACK Clock

Flow Control - Sliding Window Protocol (2)

- Avoid loss ----->
 - Let receiver tell sender how much free buffer space receiver has (WIN)
 - Update the value regularly

Flow Control - Sliding Window Protocol (3)

Retransmission?

- Use timer for each segment
- How to set a **timeout**?
 - Adaptively Timeout: determine timeout value based on smoothed estimate of RTT

Bandwidth Allocation

Good allocation is both efficient and fair

- Efficient means most capacity is used but there is no congestion
- Fair means every sender gets a reasonable share the network

Max-Min Fair Allocation

- Start with all flows at rate 0
- Increase the flows until there is a new bottleneck in the network
- Hold fixed the rate of the flows that are bottlenecked
- Go to step 2 for any remaining flows

TCP Bandwidth Allocation

- Closed loop: use feedback to adjust rates
 - NOT open loop: reserve bandwidth before use
- Host driven: host sets/enforces allocations
 - NOT network driven
- Window based
 - NOT rate based
- Congestion/Feedback signals
 - Packet loss, Packet delay, Router indication

Additive Increase Multiplicative Decrease AIMD

AIMD - Additive Increase Multiplicative Decrease

Practical AIMD

- Slow-Start (used in AI)
 - Exponential growth (1, 2, 4, 8, 16, ...)
 - Start slow, quickly reach large values
- Fast-Retransmit (used in MD)
 - Three duplicate ACKs = packet loss
 - Don't have to wait for TIMEOUT
- Fast-Recovery (used in MD)
 - Instead of timeout or slow-start, pretend duplicate ACKs after fast retransmit are the expected ACKs
 - With fast retransmit, it repairs a single segment loss quickly and keeps the ACK clock running

Practical AIMD -

Fast retransmit + recovery

TCP Reno

These three lines represent effects of:

- Different queueing algorithms
- Different buffer sizing algorithms
- Different bandwidth allocation strategies
- None of the above

Network-Side Congestion Control

- Explicit Congestion Notification (ECN)
 - Router detects the onset of congestion via its queue.
 - Marked packets treated as loss at receiver.

- Random Early Detection (**RED**)
 - Instead of marking packets (why), drop at random
 - As queue approaches full, increase likelihood of packet drop
 - Example: 1 queue slot left, 10 packets expected, 90% chance of drop

Application Layer

• DNS

• HTTP

- Web Caching / CDN
- Security

DNS

- Terminology
 - Names higher-level identifiers for resources
 - Addresses lower-level locators for resources
 - Resolution/lookup mapping a name to an address
 - Zones contiguous portions of the namespace
 - Nameserver server to contact for information about a particular zone
- Maps between host names and address
- Recursive vs iterative query
- Caching
- Built on top of UDP
- Security

HTTP - HyperText Transfer Protocol

Basis for fetching Web pages

Steps to fetch a web HTTP with URL:

- Resolve the server IP
- Setup TCP connection
- Send/Receive HTTP request over TCP
- Fetch embedded resources
- Teardown TCP connection

- Commands in request- GET/POST/...
- Codes in response 2xx=Success/4xx=Client Error/...

Page Load Time

How to decrease Page Load Time (PLT)?

- Parallel connections and persistent connections (HTTP1.1)
- HTTP caching and proxies
- Change HTTP protocol
- Move content closer to client (CDNs)

Caching/Proxies

Web Caching

- Local copy on browser
- Revalidate copy with remote server
 - Timestamp
 - Server header

Web Proxies

- Placed near pool of clients
 - Caching
 - Security checking
 - Organization policies

CDNs

- Content Delivery Networks
- Place popular content near clients
 - Use DNS to place replicas across the Internet for use by all nearby clients
 - Reduces server, network load, improves user experience

Which of the following is true about CDNs:

- They manipulate the DNS table to place multiple entries corresponding to each initial entry
- They increase server load (storage magnification), but decrease routing load
- All of the above
- None of the above

