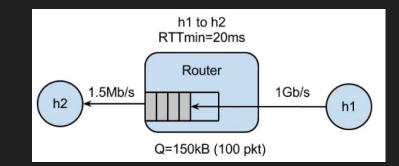
Section 8: More Bufferbloat CSE 461 21sp

Administrative Things

- Homework 4 due Tuesday, May 25th
- Quiz 4 next Wednesday, May 26th
- Project 3 due Wednesday, June 2nd

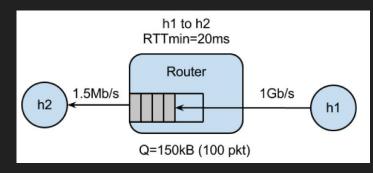

Agenda

Based on the poll...

- More Project 3, Bufferbloat Content
 - Last week high level introduction, project setup
 - This week more detail on the experiments, what you need to do
- Office Hours with time left
 - Lecture questions, project 3, homework 4 all fair game

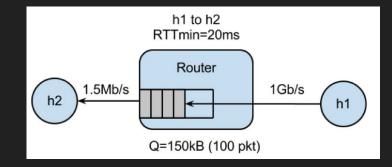
Topology Setup

- Very similar to Project 2, Part 1
 - Except need to specify link characteristics
 (bandwidth, minimum RTT, max queue size)
 - Look into Mininet documentation!



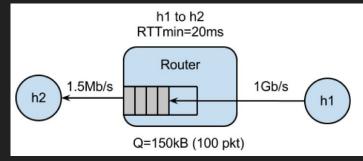
The Experiment

Run *in parallel*

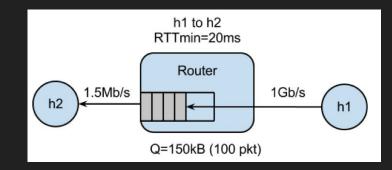

- Long-lived TCP flow between h1 and h2 (iperf/iperf3)
 - Fills bottleneck router
- Ping train between h1 and h2
 - Measure latency between hosts
- Measure time to `curl` down webpage from h1
- Monitor queue occupancy at bottleneck router
 - **(done for you)**

Goal: See how queue size behaves under congestion, and how that affects latency/download times

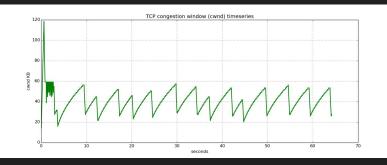
Long-lived TCP Flow


- Starter code sets up iperf server on h2
- Goal: start iperf client on h1, connect to h2
 - Should be "long-lasting", i.e. for time specified by --time parameter
- How do I connect to a certain IP or make the connection long-lasting?
 - man pages are your friend!
 - type `man iperf` in a Linux terminal

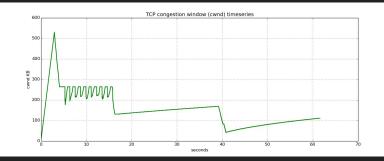
Ping Train


- Goal: Start "ping train" between h1 and h2
 - Pings should occur at 10 per second interval
 - Should run for entire experiment
- How do I specify the ping interval and how long the ping train runs?
 - man pages are your friend!
 - type `man ping` in a Linux terminal
- Write the RTTs recorded from `ping` to {args.dir}/ping.txt
 - See starter code comments for more detail

Download Webpage with curl

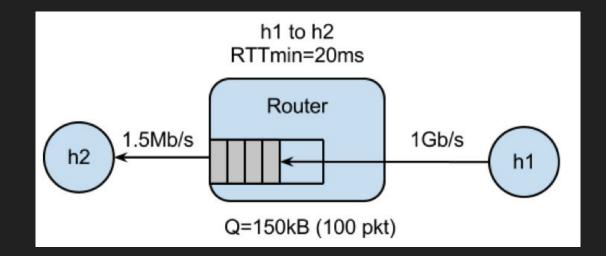

- Starter code spawns webserver on h1
- Goal: Use `curl` to measure fetch time to download webpage from h1
 - Starter code has hint on formatting curl command
 - Make sure `curl` doesn't output an error
 - Errors report very small latency
- No need to plot fetch times

Q = 20


Plotting

- Starter code contains scripts for plotting, `plot_queue.py`, `plot_ping.py`
 - Expects queue occupancy in \$dir/q.txt, ping latency in \$dir/ping.txt
 - Plots are useful for debugging!

Q = 100


- Part 3, run same experiments with TCP BBR instead of TCP Reno
 - How do you expect the graph outputs to differ?

Any questions?

What is Bufferbloat?

From Wikipedia, "bufferbloat is a cause of high latency in packet-switched networks caused by excess buffering of packets"

