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Link Layer



Link Layer

•Transfer frames over one or more connected links
• Frames are messages of limited size
• Builds on the physical layer which moves stream of bits
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Frame



In terms of layers …
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Typical Implementation of Layers (2)
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Topics we’ll cover

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet
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Framing
Delimiting start/end of frames



Framing: Problem

•How do we interpret a stream of bits as a sequence 
of frames?
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…10110 …

Um?
Ideas?



Framing Methods

1. Fixed-size frames (motivation)
2. Byte count (motivation)
3. Byte stuffing 
4. Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11
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1. Fixed-size frames

• Make every frame a fixed number of bits
• Pad smaller frames

• Problems?
• Wasted transmissions for small frames



2. Byte Count

• Problems?
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• Start each frame with a length field



2. Byte Count: Problem

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame
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3. Byte Stuffing

• Problems?
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•A special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code



3. Byte Stuffing: Problem

• Must escape the escape code too! Rules:
• Replace each FLAG in data with ESC FLAG
• Replace each ESC in data with ESC ESC
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• Now any unescaped FLAG 
denotes frame start/end



Unstuffing

You see:
1. Solitary FLAG?
2. Solitary ESC?
3. ESC FLAG?
4. ESC ESC FLAG?
5. ESC ESC ESC FLAG?
6. ESC FLAG FLAG?

What it means
-> Start or end of packet
-> Bad packet!
-> remove ESC and pass FLAG through
-> removed ESC and then start of end of packet
-> pass ESC FLAG through
-> pass FLAG through then start of end of packet



4. Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted 
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Transmitted bits
with stuffing

Data bits



Link Example: PPP over SONET

• PPP is Point-to-Point Protocol
• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links
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Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an 
IP packet over the link
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Protocol stacks
PPP frames may be split over 

SONET payloads



Link Example: PPP over SONET (3)

• Framing uses byte stuffing 
• FLAG is 0x7E and ESC is 0x7D
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Link Example: PPP over SONET (4)

• Byte stuffing method:
• To stuff (unstuff) a byte

• add (remove) ESC (0x7D)
• and XOR byte with 0x20

• Removes FLAG from the contents of the frame
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Link Layer: Error detection and 
correction



Problem: Noise may Flip Received Bits

• Link layers provides some protection
• Detect errors with codes
• Correct errors with codes
• Retransmit lost frames

•Reliability concern cuts across the layers
• E.g, TCP in the transport layer, DNS in the app layer
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Later



Problem: Noise may Flip Received Bits 
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Approach – Add Redundancy 

•Error detection codes: Add check bits to the message bits 
to let some errors be detected
•Error correction codes: Add more check bits to let some 

errors be corrected

•Key issue: Structure the code such that 
• Need few check bits to detect/correct many errors
•Modest computation
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Motivating Example

•A simple code to handle errors:
• Send two copies! Error detected if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?
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Want to Handle More Errors w/ Fewer Bits

•We’ll look at better codes (applied mathematics)
• But, they can’t handle all errors
• And they focus on accidental (random) errors
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Using Error Codes

•Codeword consists of D data plus R check bits 
(=systematic block code)

•Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes (2)

•Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits
• Error detected if R doesn’t match R’
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D R’
Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen D+R bits is unlikely to be correct
• Low, controllable overhead
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All possible D+R bits

Correct codewords
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R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

•See also:
• “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE



Hamming Distance

•Distance is the number of bit flips needed to change 
D1 to D2

•Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-strings) 
that cannot be detected
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Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected
•Error correction:
• For a coding of distance 2d+1, up to d errors can always 

be corrected by mapping to the closest valid codeword
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Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit
• Check bit could be sum modulo 2 or XOR
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Parity Bit (2)

•How well does parity work?
•What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?
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Checksums

• Idea: sum up data in N-bit words
•Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic (must 
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------
ddf2 

220d 
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Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf1 

ddf1 
+    2 
------
ddf3 

220c 

Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum
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Internet Checksum (4)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------
ffff

0000 
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Internet Checksum (5)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------
ffff

0000 



Internet Checksum (6)

•How well does the checksum work?
•What is the distance of the code?
• How many errors will it detect/correct?
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