CSE 461: Computer networks

Spring 2021

Ratul Mahajan

Link Layer

Link Layer

* Transfer frames over one or more connected links
* Frames are messages of limited size
* Builds on the physical layer which moves stream of bits

Frame >

In terms of layers ...

Sending machine Receiving machine
Network Packet Packet
l A
Link
Physical L Actual data path J

~
P

CSE 461 University of Washington

In terms of layers ...

Sending machine Receiving machine
Network Packet Packet
Frame ‘
Y
Link Header | Payload field Trailer Header | Payload field Trailer
\ Virtual data path I
| |
Physical L Actual data path J

~
P

CSE 461 University of Washington

Typical Implementation of Layers (2)

@plicat@

Computer

-~ Operating System
Network
' Driver
Link
. Network Interface
s e Card (NIC)
PHY
T

Cable (medium)

CSE 461 University of Washington

Topics we'll cover

1. Framing
* Delimiting start/end of frames

2. Error detection and correction
e Handling errors

3. Retransmissions
* Handling loss

4. Multiple Access
 802.11, classic Ethernet

5. Switching
e Modern Ethernet

Framing

Delimiting start/end of frames

Framing: Problem

* How do we interpret a stream of bits as a sequence

of frames?

..10110 ...

C
|

Framing Methods

Fixed-size frames (motivation)
Byte count (motivation)

Byte stuffing

Bit stuffing

B W

* In practice, the physical layer often helps to identify frame boundaries
e E.g., Ethernet, 802.11

1. Fixed-size frames

* Make every frame a fixed number of bits
* Pad smaller frames

* Problems?
* Wasted transmissions for small frames

2. Byte Count

e Start each frame with a length field

£

o

\ Byte count
918

213|415 8 ¥ 152 | 314 S| 8|90 [2Z|3
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes o bytes 8 bytes 8 bytes

* Problems?

CSE 461 University of Washington

12

2. Byte Count: Problem

* Difficult to re-synchronize after framing error
* Want a way to scan for a start of frame

Error

Frame 1 Frame 2 Now a byte
(Wrong) count

CSE 461 University of Washington 13

3. Byte Stuffing

* A special flag byte value for start/end of frame
* Replace (“stuff”) the flag with an escape code

FLAG| Header Payload field Trailer |FLAG

* Problems?

3. Byte Stuffing: Problem

* Must escape the escape code too! Rules:
* Replace each FLAG in data with ESC FLAG
* Replace each ESC in data with ESC ESC

Original bytes After stuffing * Now any unescaped FLAG
A ||FLac|| B — | A ||esc||FLac|| B denotes frame start/end
A ESC B = A ESC | | ESC B

A | |ESC | |FLAGI| B | — A ESC | |ESC | | ESC | |FLAG| | B

A | |ESC||ESC|| B | — A ESC||ESC||ESC||ESC|| B

CSE 461 University of Washington 15

Unstuffing

You see:

Solitary FLAG?
Solitary ESC?

ESC FLAG?

ESC ESC FLAG?
ESC ESC ESC FLAG?
ESC FLAG FLAG?

A A A

What it means

-> Start or end of packet

-> Bad packet!

-> remove ESC and pass FLAG through

-> removed ESC and then start of end of packet
-> pass ESC FLAG through

-> pass FLAG through then start of end of packet

4. Bit Stuffing

e Can stuff at the bit level too

* Call a flag six consecutive 1s
* On transmit, after five 1s in the data, inserta O
 On receive, a 0 after five 1s is deleted

Databits: 011011111111111111110010

Transmitted bits 4 4 54 4 141011111011111010010

with stuffing \ T /

Stuffed bits

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol
* Widely used for link framing

e E.g., itis used to frame IP packets that are sent over SONET optical links

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the framing that carries an
IP packet over the link

Router

IP packet

PPP frame

:

t

SONET payload

SONET payload

I= P
PPP PPP
SONET gbpgirca' SONET

Protocol stacks

CSE 461 University of Washington

PPP frames may be split over
SONET payloads

19

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
* FLAG is 0x7E and ESC is 0x7D

Bytes

1 1 1 1or2 Variable 20r4 1
-
Flag Address Control Protocol | Payload | Checksum Flag

01111110

11111111

00000011

((
)])

01111110

CSE 461 University of Washington

20

Link Example: PPP over SONET (4)

* Byte stuffing method:

e To stuff (unstuff) a byte
* add (remove) ESC (0x7D)
e and XOR byte with 0x20

« Removes FLAG from the contents of the frame

Link Layer: Error detection and
correction

Problem: Noise may Flip Received Bits

* Link layers provides some protection
* Detect errors with codes
e Correct errors with codes
* Retransmit lost frames Later

* Reliability concern cuts across the layers
*E.g, TCP in the transport layer, DNS in the app layer

Problem: Noise may Flip Received Bits

0 0 0 0 O

Signal

Slghty 11

oisy 0 0 0 0 0 1

CSE 461 University of Washington

|deas?

24

Approach — Add Redundancy

* Error detection codes: Add check bits to the message bits
to let some errors be detected

* Error correction codes: Add more check bits to let some
errors be corrected

* Key issue: Structure the code such that

* Need few check bits to detect/correct many errors
* Modest computation

Motivating Example

* A simple code to handle errors:
* Send two copies! Error detected if different.

* How good is this code?
* How many errors can it detect/correct?
* How many errors will make it fail?

Want to Handle More Errors w/ Fewer Bits

* We'll look at better codes (applied mathematics)
* But, they can’t handle all errors
* And they focus on accidental (random) errors

Using Error Codes

* Codeword consists of D data plus R check bits
(=systematic block code)

Data bits Check bits
D R=fn(D) —

e Sender:

* Compute R check bits based on the D data bits; send the
codeword of D+R bits

Using Error Codes (2)

e Receiver:

* Receive D+R bits with unknown errors
 Recompute R check bits based on the D data bits
* Error detected if R doesn’t match R’

Data bits Check bits

—_— D

RI

R=fn(D)

N
/1

=?

Intuition for Error Codes

e For D data bits, R check bits:

All possible D+R bits —(A

Correct codewords ——0
\ J

 Randomly chosen D+R bits is unlikely to be correct
* Low, controllable overhead

RW. Hamming (1915-1998)

* Much early work on codes:

* “Error Detecting and Error Correcting
Codes”, BSTJ, 1950

*See also:
* “You and Your Research”, 1986

CSE 461 University of Washington

Source: I[EEE GHN, © 2009 IEEE

31

Hamming Distance

* Distance is the number of bit flips needed to change
D,to D,

* Homming distance of a coding is the minimum error
distance between any pair of codewords (bit-strings)
that cannot be detected

Hamming Distance (2)

*Error detection:
* For a coding of distance d+1, up to d errors will always be
detected
* Error correction:

* For a coding of distance 2d+1, up to d errors can always
be corrected by mapping to the closest valid codeword

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit
* Check bit could be sum modulo 2 or XOR

Parity Bit (2)

* How well does parity work?
* What is the distance of the code?
* How many errors will it detect/correct?

* What about larger errors?

Checksums

*|dea: sum up data in N-bit words
* Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

* Stronger protection than parity

Internet Checksum

*Sum is defined in 1s complement arithmetic (must
add back carries)
* And it’s the negative sum

* “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words ...” — RFC 791

Internet Checksum (2)

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
£204
£f4£f5
f£F6£7

Internet Checksum (3)

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
£204
f£4£f5
f£F6£7
+(0000)

Internet Checksum (4)

Receiving: 0001
: : £204

1. Arrange data in 16-bit words £4£5
2. Checksum will be non-zero, add f6£f7
+ 220c

3. Add any carryover back to get 16 bits = —————-
4. Negate the result and check it is O

Internet Checksum (5)

Receiving: 0001
: : £204

1. Arrange data in 16-bit words FA4F5
2. Checksum will be non-zero, add f6£7
+ 220c

3. Add any carryover back to get 16 bits = —————-
4. Negate the result and check itis O 2f£f£d
fffd

+ 2

ffff

Internet Checksum (6)

e How well does the checksum work?
e What is the distance of the code?
* How many errors will it detect/correct?

