
CSE 461: Computer networks
Spring 2021

Ratul Mahajan

Link Layer

Link Layer

•Transfer frames over one or more connected links
• Frames are messages of limited size
• Builds on the physical layer which moves stream of bits

CSE 461 University of Washington 3

Frame

In terms of layers …

CSE 461 University of Washington 4

Actual data path

Virtual data path

Network

Link

Physical

In terms of layers …

CSE 461 University of Washington 5

Actual data path

Virtual data path

Network

Link

Physical

Typical Implementation of Layers (2)

CSE 461 University of Washington 6

Topics we’ll cover

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 7

Framing
Delimiting start/end of frames

Framing: Problem

•How do we interpret a stream of bits as a sequence
of frames?

CSE 461 University of Washington 9

…10110 …

Um?
Ideas?

Framing Methods

1. Fixed-size frames (motivation)
2. Byte count (motivation)
3. Byte stuffing
4. Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11

CSE 461 University of Washington 10

1. Fixed-size frames

• Make every frame a fixed number of bits
• Pad smaller frames

• Problems?
• Wasted transmissions for small frames

2. Byte Count

• Problems?

CSE 461 University of Washington 12

• Start each frame with a length field

2. Byte Count: Problem

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

CSE 461 University of Washington 13

3. Byte Stuffing

• Problems?

CSE 461 University of Washington 14

•A special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code

3. Byte Stuffing: Problem

• Must escape the escape code too! Rules:
• Replace each FLAG in data with ESC FLAG
• Replace each ESC in data with ESC ESC

CSE 461 University of Washington 15

• Now any unescaped FLAG
denotes frame start/end

Unstuffing

You see:
1. Solitary FLAG?
2. Solitary ESC?
3. ESC FLAG?
4. ESC ESC FLAG?
5. ESC ESC ESC FLAG?
6. ESC FLAG FLAG?

What it means
-> Start or end of packet
-> Bad packet!
-> remove ESC and pass FLAG through
-> removed ESC and then start of end of packet
-> pass ESC FLAG through
-> pass FLAG through then start of end of packet

4. Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted

CSE 461 University of Washington 17

Transmitted bits
with stuffing

Data bits

Link Example: PPP over SONET

• PPP is Point-to-Point Protocol
• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links

CSE 461 University of Washington 18

Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an
IP packet over the link

CSE 461 University of Washington 19

Protocol stacks
PPP frames may be split over

SONET payloads

Link Example: PPP over SONET (3)

• Framing uses byte stuffing
• FLAG is 0x7E and ESC is 0x7D

CSE 461 University of Washington 20

Link Example: PPP over SONET (4)

• Byte stuffing method:
• To stuff (unstuff) a byte

• add (remove) ESC (0x7D)
• and XOR byte with 0x20

• Removes FLAG from the contents of the frame

CSE 461 University of Washington 21

Link Layer: Error detection and
correction

Problem: Noise may Flip Received Bits

• Link layers provides some protection
• Detect errors with codes
• Correct errors with codes
• Retransmit lost frames

•Reliability concern cuts across the layers
• E.g, TCP in the transport layer, DNS in the app layer

CSE 461 University of Washington 23

Later

Problem: Noise may Flip Received Bits

CSE 461 University of Washington 24

Signal
0 0 0 0

11 1
0

0 0 0 0
11

0 0

0 0
1

0 10
1

0

Slightly
Noisy

Very
noisy

Ideas?

Approach – Add Redundancy

•Error detection codes: Add check bits to the message bits
to let some errors be detected
•Error correction codes: Add more check bits to let some

errors be corrected

•Key issue: Structure the code such that
• Need few check bits to detect/correct many errors
•Modest computation

CSE 461 University of Washington 25

Motivating Example

•A simple code to handle errors:
• Send two copies! Error detected if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

CSE 461 University of Washington 26

Want to Handle More Errors w/ Fewer Bits

•We’ll look at better codes (applied mathematics)
• But, they can’t handle all errors
• And they focus on accidental (random) errors

CSE 461 University of Washington 27

Using Error Codes

•Codeword consists of D data plus R check bits
(=systematic block code)

•Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 28

D R=fn(D)

Data bits Check bits

Using Error Codes (2)

•Receiver:
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits
• Error detected if R doesn’t match R’

CSE 461 University of Washington 29

D R’
Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen D+R bits is unlikely to be correct
• Low, controllable overhead

CSE 461 University of Washington 30

All possible D+R bits

Correct codewords

CSE 461 University of Washington 31

R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

•See also:
• “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

Hamming Distance

•Distance is the number of bit flips needed to change
D1 to D2

•Hamming distance of a coding is the minimum error
distance between any pair of codewords (bit-strings)
that cannot be detected

CSE 461 University of Washington 32

Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be

detected
•Error correction:
• For a coding of distance 2d+1, up to d errors can always

be corrected by mapping to the closest valid codeword

CSE 461 University of Washington 33

Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit
• Check bit could be sum modulo 2 or XOR

CSE 461 University of Washington 34

Parity Bit (2)

•How well does parity work?
•What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

CSE 461 University of Washington 35

Checksums

• Idea: sum up data in N-bit words
•Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity

CSE 461 University of Washington 36

1500 bytes 16 bits

Internet Checksum

•Sum is defined in 1s complement arithmetic (must
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 37

CSE 461 University of Washington 38

Internet Checksum (2)
Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
f204
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 39

Internet Checksum (3)
0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

CSE 461 University of Washington 40

Internet Checksum (4)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

CSE 461 University of Washington 41

Internet Checksum (5)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

Internet Checksum (6)

•How well does the checksum work?
•What is the distance of the code?
• How many errors will it detect/correct?

CSE 461 University of Washington 42

