CSE 461: Computer Networks

Spring 2021

Ratul Mahajan

CSE 461 University of Washington

Physical Layer

CSE 461 University of Washington

Physical Layer

- Transfers bits through signals overs links
 - Wires etc. carry <u>analog signals</u>
 - We want to send <u>digital bits</u>

Topics

- 1. Media types
 - Wires, fiber optics, wireless, propagation
 - Bandwidth, attenuation, noise
- 2. Coding and Modulation schemes
 - Representing bits, noise
- 3. Fundamental limits
 - Nyquist, Shannon

Media

CSE 461 University of Washington

Types of Media

- <u>Media</u> propagate <u>signals</u> that carry <u>bits</u>
- Some common types:
 - Wires
 - Fiber (fiber optic cables)
 - Wireless

Wires – Twisted Pair

• Very common; used in LANs and telephone lines

Wires – Coaxial Cable

• Also common. Better shielding for better performance

• Other kinds of wires too: e.g., electrical power (§2.2.4)

- Long, thin, pure strands of glass
 - Enormous bandwidth (high speed) over long distances

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u> at a receiver; need to coordinate use

Wireless Interference

Multipath

 Signals bounce off objects and take multiple paths
 Some frequencies attenuated at receiver, varies with location

Many Other Wireless Effects

- Wireless propagation is complex, depends on environment
- Some key effects are highly frequency dependent,
 - E.g., <u>multipath</u> at microwave frequencies

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

ACTIVITY CODE

NON-BOVERNMENT EXCLUSIVE

U.S. DEPARTMENT OF COMMERCE Harional Telecommunications and Information Adv Offices of Spectrum Management Cathore 2003

Coding and Modulation

CSE 461 University of Washington

Topic

- How can we send information across a link?
 - This is the topic of coding and modulation
 - Modem (from modulator-demodulator)

A Simple Coding Scheme

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Coding Scheme (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Many Other Schemes

- Can use more signal levels
 - E.g., 4 levels is 2 bits per symbol
- Practical schemes are driven by engineering considerations
 - E.g., clock recovery

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Ideas?

Answer 1: A Simple Coding

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
- Then go back to OV for a "Reset"
 - This is called RZ (Return to Zero)

Answer 2: Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - 0000 → 11110, 0001 → 01001, 1110 → 11100, ... 1111 → 11101
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI, §2.5.1)

Answer 2: Clock Recovery – 4B/5B (2)

• 4B/5B code for reference:

• 0000→11110, 0001→01001, 1110→11100, ... 1111→11101

• Message bits: 1111 0000 0001 Coded Bits:

Signal:

Clock Recovery -4B/5B(3)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 00000001 Coded Bits: 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 Signal:

Coding vs. Modulation

- What we have seen so far is <u>coding</u>
 - Signal is sent directly on a wire
- These signals do not propagate well as RF
 - Need to send at higher frequencies
- <u>Modulation</u> carries a signal by modulating a carrier
 - Baseband is signal pre-modulation
 - Keying is the *digital* form of modulation (equivalent to coding but using modulation)

Passband Modulation (2)

- Carrier is simply a signal oscillating at a desired frequency:
- We can modulate it by changing:
 - Amplitude, frequency, or phase

Remember: Everything is ultimately analog

- Even digital signals
- Digital information is a *discrete* concept represented in an analog physical medium
 A printed book (analog) vs.
 - Words conveyed in the book (digital)

Fundamental Limits

CSE 461 University of Washington

How much data can we send over a link?

- Key channel properties
 - B: Bandwidth (hertz)
 - S: Signal strength
 - N: Noise
- B limits the rate of transitions, and S/N limits how many signal levels we can distinguish
 - <u>Nyquist</u> limit (~1924), <u>Shannon</u> capacity (1948)

Nyquist Limit

• The maximum <u>symbol</u> rate is 2B

1010101010101010101

• Thus if there are V signal levels, ignoring noise, the maximum bit rate is:

$$R = 2B \log_2 V bits/sec$$

Claude Shannon (1916-2001)

- Father of information theory
 - "A Mathematical Theory of Communication", 1948
- Fundamental contributions to digital computers, security, and communications
 - Electromechanical mouse that "solves" mazes!

Credit: Courtesy MIT Museum

Shannon Capacity

- How many levels we can distinguish depends on S/N
 - Or SNR, the Signal-to-Noise Ratio
 - Noise is random, hence some errors

SNR given on a log-scale in deciBels:
SNR_{dB} = 10log₁₀(S/N)

Shannon Capacity (2)

• Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

$$C = B \log_2(1 + S/N) bits/sec$$

Shannon Capacity Takeaways

 $C = B \log_2(1 + S/N) bits/sec$

- There is some rate at which we can transmit data without loss over a random channel
- Assuming noise fixed, increasing the signal power yields diminishing returns : (
- Assuming signal is fixed, increasing bandwith increases capacity linearly!

Wired/Wireless Perspective (2)

- Wires, and Fiber
 - Engineer link to have requisite SNR and B
 - \rightarrow Can fix data rate

Engineer SNR for data rate

- Wireless
 - Given B, but SNR varies greatly, e.g., up to 60 dB!
 - →Can't design for worst case, must adapt data rate

Adapt data rate to SNR

Putting it all together – DSL

- <u>Digital Subscriber Line</u> is widely used for broadband
 - Many variants offer 10s of Mbps
 - Reuses twisted pair telephone line to the home
 - Has ~2 MHz of bandwidth but voice uses only lowest ~4 kHz

DSL (2)

- Separate bands for upstream and downstream (larger)
- Modulation varies both amplitude and phase (QAM)

Phy Layer Innovation Still Happening!

- Backscatter "zero power" wireless
- **mm wave** 30GHz+ radio equipment
- Free space optical (FSO)
- Cooperative interference management
- Massive MIMO and beamforming
- Powerline Networking

Backup

CSE 461 University of Washington

All distilled to a simple link model

- Rate (or bandwidth, capacity, speed) in bits/second
- <u>Delay</u> in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Simple Link Model

- We'll end with an abstraction of a physical channel
 - Rate (or bandwidth, capacity, speed) in bits/second
 - <u>Delay</u> in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Message Latency

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

• <u>Propagation delay</u>: time for bits to propagate across the wire

• Combining the two terms we have:

Message Latency (2)

- <u>Latency</u> is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

• <u>Propagation delay</u>: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / $\frac{2}{3}c = D$ seconds

• Combining the two terms we have: L = M/R + D

Latency Examples

Remembering L = M/R + D

- "Dialup" with a telephone modem:
 - D = 5 ms, R = 56 kbps, M = 1250 bytes

- Broadband cross-country link:
 - D = 50 ms, R = 10 Mbps, M = 1250 bytes

Latency Examples (2)

- "Dialup" with a telephone modem:
 - D = 5 ms, R = 56 kbps, M = 1250 bytes
 - $L = (1250x8)/(56 \times 10^3) \sec + 5ms = 184 ms!$
- Broadband cross-country link:
 - D = 50 ms, R = 10 Mbps, M = 1250 bytes
 - L = (1250x8) / (10 x 10⁶) sec + 50ms = 51 ms
- A long link or a slow rate means high latency: One component dominates

Bandwidth-Delay Product

- Messages take space on the wire!
- The amount of data in flight is the <u>bandwidth-delay</u> (BD) product

 $BD = R \times D$

- Measure in bits, or in messages
- Small for LANs, big for "long fat" pipes

Bandwidth-Delay Example

• Fiber at home, cross-country R=40 Mbps, D=50 ms

Bandwidth-Delay Example (2)

- Fiber at home, cross-country R=40 Mbps, D=50 ms
 BD = 40 x 10⁶ x 50 x 10⁻³ bits
 = 2000 Kbit
 = 250 KB
- That's quite a lot of data in the network"!

