CSE 461: Computer networks

Spring 2021

Ratul Mahajan
Web Security
What should be the Threat Model for the Web?
Goal and Threat Model

• Much can go wrong on the web!
 • Clients encounter malicious content
 • Web servers are target of break-ins
 • Fake content/servers trick users
 • Data sent over network is stolen ...
Goal and Threat Model (2)

• Goal of HTTPS is to secure HTTP
• We focus on network threats:
 1. Eavesdropping client/server traffic
 2. Tampering with client/server traffic
 3. Impersonating web servers
HTTPS Context

- HTTPS (HTTP Secure) is an add-on
 - Means HTTP over SSL/TLS
 - SSL (Secure Sockets Layer) precedes TLS (Transport Layer Security)
HTTPS Context (2)

• SSL came out of Netscape
 • SSL2 (flawed) made public in ‘95
 • SSL3 fixed flaws in ‘96

• TLS is the open standard
 • TLS 1.0 in ‘99, 1.1 in ‘06, 1.2 in ‘08

• Motivated by secure web commerce
 • Slow adoption, now widespread use
 • Can be used by any app, not just HTTP
SSL/TLS Operation

• Protocol provides:
 1. Verification of identity of server (and optionally client)
 2. Message exchange between the two with confidentiality, integrity, authenticity and freshness

• Consists of authentication phase (that sets up encryption) followed by data transfer phase
SSL/TLS Authentication

- Must allow clients to securely connect to servers not used before
 - Client must authenticate server
 - Server typically doesn’t identify client

- Uses public key authentication
 - But how does client get server’s key?
 - With certificates
Certificates

- A certificate binds pubkey to identity, e.g., domain
- Distributes public keys when signed by a party you trust
- Commonly in a format called X.509

I hereby certify that the public key
19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A
belongs to
Robert John Smith
12345 University Avenue
Berkeley, CA 94702
Birthday: July 4, 1958
Email: bob@superdupernet.com

Signed by CA
PKI (Public Key Infrastructure)

- Adds hierarchy to certificates to let parties issue
- Issuing parties are called CAs (Certificate Authorities)
PKI (2)

- Need public key of PKI root and trust in servers on path to verify a public key of website ABC
 - Browser has Root’s public key
 - {RA1’s key is X} signed Root
 - {CA1’s key is Y} signed RA1
 - {ABC’s key is Z} signed CA1
PKI (3)

- Browser/OS has public keys of the trusted roots of PKI
 - >100 root certificates!
- Inspect your web browser

Certificate for wikipedia.org issued by DigiCert
PKI (4)

• Real-world complication:
 • Public keys may be compromised
 • Certificates must then be revoked

• PKI includes a CRL (Certificate Revocation List)
 • Browsers use to weed out bad keys
TLS handshake
What can attacker (in the network) still learn from an HTTPS connection?

• “Metadata”
Takeaways

• SSL/TLS is a secure transport
 • For HTTPS and more, with the usual confidentiality, integrity / authenticity
 • Very widely used today

• Client authenticates web server
 • Done with a PKI and certificates
 • Major area of complexity and risk

• “Metadata” leaks
 • Use other tools (Tor or VPN) if you want to hide that