
CSE 461: Computer networks
Spring 2021

Ratul Mahajan

Distance Vector Routing

Distance Vector Routing

•Simple, early routing approach
• Used in ARPANET, and RIP

•One of two main approaches to routing
• Distributed version of Bellman-Ford
•Works, but very slow convergence after some failures

• Link-state algorithms are now typically used in
practice
•More involved, better behavior

CSE 461 University of Washington 3

Distance Vector Setting

Each node computes its forwarding table in a
distributed setting:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost

CSE 461 University of Washington 4

Distance Vector Algorithm

Each node maintains a vector of (distance, next hop)
to all destinations
1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to

other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the

shortest distance heard, after adding cost of neighbor link
4. Use the best neighbor for forwarding

CSE 461 University of Washington 5

Distance Vector (2)

•Consider from the point of view of node A
• Can only talk to nodes B and E

CSE 461 University of Washington 6

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

To Cost
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Initial
vector

Distance Vector (3)

•First exchange with B, E; learn best 1-hop routes

7

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
∞ --
∞ --
10 E
∞ --
∞ --
∞ --

To B
says

E
says

A ∞ ∞
B 0 ∞
C ∞ ∞
D ∞ ∞
E ∞ 0
F ∞ ∞
G ∞ ∞
H ∞ ∞

B
+4

E
+10

∞ ∞
4 ∞
∞ ∞
∞ ∞
∞ 10
∞ ∞
∞ ∞
∞ ∞

Learned better route

Distance Vector (4)

•Second exchange; learn best 2-hop routes

CSE 461 University of Washington 8

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
12 E
8 B
7 B
7 B
∞ --

To B
says

E
says

A 4 10
B 0 4
C 2 1
D ∞ 2
E 4 0
F 3 2
G 3 ∞
H ∞ ∞

B
+4

E
+10

8 20
4 14
6 11
∞ 12
8 10
7 12
7 ∞
∞ ∞

Distance Vector (4)

•Third exchange; learn best 3-hop routes

CSE 461 University of Washington 9

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
8 B
7 B
7 B
7 B
9 B

To B
says

E
says

A 4 8
B 0 3
C 2 1
D 4 2
E 3 0
F 3 2
G 3 6
H 5 4

B
+4

E
+10

8 18
4 13
6 11
8 12
7 10
7 12
7 16
9 14

Distance Vector (5)

•Subsequent exchanges; converged

CSE 461 University of Washington 10

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
8 B
8 B
7 B
7 B
9 B

To B
says

E
says

A 4 7
B 0 3
C 2 1
D 4 2
E 3 0
F 3 2
G 3 6
H 5 4

B
+4

E
+10

8 17
4 13
6 11
8 12
7 10
7 12
7 16
9 14

Distance Vector Dynamics

•Adding routes:
• News travels one hop per exchange

•Removing routes:
•When a node fails, no more exchanges, other nodes forget

CSE 461 University of Washington 11

Problem?

Count to Infinity: Problem

•Good news travels quickly, bad news slowly
(inferred)

CSE 461 University of Washington 12

“Count to infinity” scenario

Desired convergence

X

Count to Infinity: Heuristics

• “Split horizon”
• Don’t send route back to where you learned it from.

•Poison reverse
• Send “infinity” when you notice a disconnect

CSE 461 University of Washington 13

X X

Count to Infinity: Heuristics (2)

•Neither split horizon and poison reverse are very
effective in practice
• Link state is now favored except when resource-limited

CSE 461 University of Washington 14

RIP (Routing Information Protocol)

•DV protocol with hop count as metric
• Infinity is 16 hops; limits network size
• Includes split horizon, poison reverse

•Routers send vectors every 30 seconds
• Runs on top of UDP
• Time-out in 180 secs to detect failures

•RIPv1 specified in RFC1058 (1988)

CSE 461 University of Washington 15

Link-State Routing

Link-State Routing

•Second broad class of routing algorithms
•More computation than DV but better dynamics

•Widely used in practice
• Used in Internet/ARPANET from 1979
•Modern networks use OSPF (L3) and IS-IS (L2)

CSE 461 University of Washington 17

Link-State Setting

Same distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes/links may fail, messages may be lost

CSE 461 University of Washington 18

Link-State Algorithm

Proceeds in two phases:
1. Nodes flood topology with link state packets
• Each node learns full topology

2. Each node computes its own forwarding table
• By running Dijkstra (or equivalent)

CSE 461 University of Washington 19

Part 1: Flooding

Flooding

•Rule used at each node:
• Sends an incoming message on to all other neighbors
• Remember the message so that it is only flood once

CSE 461 University of Washington 21

Flooding (2)

•Consider a flood from A; first reaches B via AB, E via
AE

CSE 461 University of Washington 22

A B

C

D

E

F

G

H

Flooding (3)

•Next B floods BC, BE, BF, BG, and E floods EB, EC, ED,
EF

CSE 461 University of Washington 23

A B

C

D

E

F

G

H

E and B send to
each other

Flooding (4)

•C floods CD, CH; D floods DC; F floods FG; G floods
GF

24

A B

C

D

E

F

G

H

F gets another copy

Flooding (5)

•H has no-one to flood … and we’re done

CSE 461 University of Washington 25

A B

C

D

E

F

G

H

Each link carries the
message, and in at
least one direction

Flooding Details

•Remember message (to stop flood) using source
and sequence number
• So next message (with higher sequence) will go through

•To make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed

CSE 461 University of Washington 26

Problem?

Flooding Problem

•F receives the same message multiple times

CSE 461 University of Washington 27

A B

C

D

E

F

G

H

E and B send to
each other too

Part 2: Dijkstra’s Algorithm

CSE 461 University of Washington 29

Edsger W. Dijkstra (1930-2002)

•Famous computer scientist
• Programming languages
• Distributed algorithms
• Program verification

•Dijkstra’s algorithm, 1969
• Single-source shortest paths, given

network with non-negative link costs
By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons

Dijkstra’s Algorithm

Algorithm:
•Mark all nodes tentative, set distances from source to 0

(zero) for source, and ∞ (infinity) for all other nodes
•While tentative nodes remain:
• Extract N, a node with lowest distance
• Add link to N to the shortest path tree
• Relax the distances of neighbors of N by lowering any better

distance estimates

CSE 461 University of Washington 30

Dijkstra’s Algorithm (2)

• Initialization

CSE 461 University of Washington 31

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

∞ ∞

∞

∞

∞

We’ll compute
shortest paths

from A ∞

Dijkstra’s Algorithm (3)

• Relax around A

CSE 461 University of Washington 32

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

∞ 10

4

∞

∞

∞

Dijkstra’s Algorithm (4)

• Relax around B

CSE 461 University of Washington 33

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

8

4

Distance fell!

6

7

7

∞

Dijkstra’s Algorithm (5)

• Relax around C

CSE 461 University of Washington 34

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Distance fell
again!

6

7

7

8

9

Dijkstra’s Algorithm (6)

• Relax around G (say)

CSE 461 University of Washington 35

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Didn’t fall …

6

7

7

8

9

Dijkstra’s Algorithm (7)

• Relax around F (say)

CSE 461 University of Washington 36

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Relax has no effect

6

7

7

8

9

Dijkstra’s Algorithm (8)

• Relax around E

CSE 461 University of Washington 37

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (9)

• Relax around D

CSE 461 University of Washington 38

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (10)

• Finally, H … done

CSE 461 University of Washington 39

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

Dijkstra Comments

• Finds shortest paths in order of increasing distance
from source
• Leverages optimality property

• Runtime depends on cost of extracting min-cost node
• Superlinear in network size (grows fast)
• Using Fibonacci Heaps the complexity is O(|E|+|V|log| V|)

•Gives complete source/sink tree
• More than needed for forwarding!
• But requires complete topology

CSE 461 University of Washington 40

Bringing it all together…

CSE 461 University of Washington 42

Phase 1: Topology Dissemination
•Each node floods link state packet

(LSP) that describes their portion of
the topology

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Seq. #
A 10
B 4
C 1
D 2
F 2

Node E’s LSP
flooded to A, B,
C, D, and F

Phase 2: Route Computation

•Each node has full topology
• By combining all LSPs

•Each node simply runs Dijkstra
• Replicated computation, but finds required routes directly
• Compile forwarding table from sink/source tree
• That’s it folks!

CSE 461 University of Washington 43

Forwarding Table

CSE 461 University of Washington 44

To Next
A C
B C
C C
D D
E --
F F
G F
H CA B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Source Tree for E (from Dijkstra) E’s Forwarding Table

Handling Changes

•On change, flood updated LSPs, re-compute routes
• E.g., nodes adjacent to failed link or node initiate

CSE 461 University of Washington 45

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

XXXX
Seq. #

A 4
C 2
E 4
F 3
G ∞

B’s LSP
Seq. #

B 3
E 2
G ∞

F’s LSP
Failure!

Handling Changes (2)

• Link failure
• Both nodes notice, send updated LSPs
• Link is removed from topology

•Node failure
• All neighbors notice a link has failed
• Failed node can’t update its own LSP
• But it is OK: all links to node removed

CSE 461 University of Washington 46

Handling Changes (3)

•Addition of a link or node
• Add LSP of new node to topology
• Old LSPs are updated with new link

•Additions are the easy case …

CSE 461 University of Washington 47

Link-State Complications

• Things that can go wrong:
• Seq. number reaches max, or is corrupted
• Node crashes and loses seq. number
• Network partitions then heals

• Strategy:
• Include age on LSPs and forget old information that is not

refreshed
•Much of the complexity is due to handling corner cases

CSE 461 University of Washington 48

DV/LS Comparison

CSE 461 University of Washington 49

Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute

IS-IS and OSPF Protocols

•Widely used in large enterprise and ISP networks
• IS-IS = Intermediate System to Intermediate System
• OSPF = Open Shortest Path First

• Link-state protocol with many added features
• E.g., “Areas” for scalability

CSE 461 University of Washington 50

