
Transport Layer (TCP/UDP)

Recall the protocol stack

Organize network functionality into protocols and layers

Higher layer protocols use the services provided by the lower layer

Protocol instances of the same type communicate with each other
virtually

OSI Layers

Internet layers

Computer Networks 4

4 Application

3 Transport

2 Internet

1 Link Ethernet
802.11

IP

TCP UDP

HTTPSMTP RTP DNS

3G
DSLCable

“Narrow
waist”

Internet layers

Computer Networks 5

Application – Programs that use network service

Transport – Provides end-to-end data delivery

Network – Send packets over multiple networks

Link – Send frames over one or more links

Physical – Send bits using signals

Transport layer

Provides end-to-end connectivity to applications

CSE 461 University of Washington 6

Host Host

Transport
Network

Client

Transport
Network

Server

Transport layer protocols

•Provide different kinds of data delivery across the
network to applications

CSE 461 University of Washington 7

Unreliable Reliable
Messages Datagrams (UDP)
Bytestream Streams (TCP)

Comparison of Internet transports

•TCP is full-featured, UDP is a glorified packet

CSE 461 University of Washington 8

TCP (Streams) UDP (Datagrams)
Connections Datagrams

Bytes are delivered once,
reliably, and in order

Messages may be lost,
reordered, duplicated

Arbitrary length content Limited message size
Flow control matches

sender to receiver
Can send regardless

of receiver state
Congestion control matches

sender to network
Can send regardless

of network state

Socket API

•Simple abstraction to use the network
• The “network” API (really Transport service) used to write

all Internet apps
• Part of all major OSes and languages; originally Berkeley

(Unix) ~1983
•Supports both Internet transport services (Streams

and Datagrams)

CSE 461 University of Washington 9

Socket API (2)

• Sockets let apps attach to the local network at
different ports

CSE 461 University of Washington 10

Socket,
Port #1

Socket,
Port #2

Socket API (3)
•Same API used for Streams and Datagrams

CSE 461 University of Washington 11

Primitive Meaning
SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket
LISTEN Announce willingness to accept connections
ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND(TO) Send some data over the socket
RECEIVE(FROM) Receive some data over the socket
CLOSE Release the socket

Only needed
for Streams

To/From for
Datagrams

Ports

•Application process is identified by the tuple IP
address, transport protocol, and port
• Ports are 16-bit integers representing local “mailboxes”

that a process leases
•Servers often bind to “well-known ports”
• <1024, require administrative privileges

•Clients often assigned “ephemeral” ports
• Chosen by OS, used temporarily

CSE 461 University of Washington 12

Some Well-Known Ports

CSE 461 University of Washington 13

Port Protocol Use
TCP/20, 21 FTP File transfer

TCP/22 SSH Remote login, replacement for Telnet
TCP/25 SMTP Email
TCP/80 HTTP World Wide Web

TCP/443 HTTPS Secure Web (HTTP over SSL/TLS)
TCP/3306 MYSQL MYSQL database access

UDP/53 DNS Domain name service

Full list: https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Topics

• Service models
• Socket API and ports
• Datagrams, Streams

• User Datagram Protocol (UDP)
• Connections (TCP)
• Sliding Window (TCP)
• Flow control (TCP)
• Retransmission timers (TCP)
• Congestion control (TCP)

CSE 461 University of Washington 14

UDP

User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or bytestreams
• Like what?

CSE 461 University of Washington 16

User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or bytestreams
• Voice-over-IP
• DNS
• DHCP
• Games

(If application wants reliability and messages then it has
work to do!)

CSE 461 University of Washington 17

Datagram Sockets

CSE 461 University of Washington 18

Client (host 1) Server (host 2)Time

request

reply

Datagram Sockets (2)

CSE 461 University of Washington 19

Client (host 1) Server (host 2)Time

1: socket 2: bind
1: socket

6: sendto

3: recvfrom*4: sendto

5: recvfrom*

7: close 7: close
*= call blocks

request

reply

UDP Buffering

CSE 461 University of Washington 20

App

Port Mux/Demux

App AppApplication

Transport
(UDP)

Network (IP) packet

Message queues

Ports

UDP Header

•Uses ports to identify sending and receiving
application processes
•Datagram length up to 64K
•Checksum (16 bits) for reliability

CSE 461 University of Washington 21

UDP Header (2)

•Optional checksum covers UDP segment and IP
pseudoheader
• Checks key IP fields (addresses)
• Value of zero means “no checksum”

CSE 461 University of Washington 22

TCP

TCP

•TCP Consists of 3 primary phases:
• Connection Establishment (Setup)
• Sliding Windows/Flow Control
• Connection Release (Teardown)

Connection Establishment

•Both sender and receiver must be ready before we
start the transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

•This is signaling
• It sets up state at the endpoints
• Like “dialing” for a telephone call

CSE 461 University of Washington 25

CSE 461 University of Washington 26

Three-Way Handshake
• Used in TCP; opens connection for

data in both directions
• Each side probes the other with a

fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment
• Echo on an ACKnowledge segment

• Chosen to be robust even against
delayed duplicates

Active party
(client)

Passive party
(server)

CSE 461 University of Washington 27

Three-Way Handshake (2)

•Three steps:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)
• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

•Sequence and ack numbers carried
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CSE 461 University of Washington 28

Three-Way Handshake (3)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)

CSE 461 University of Washington 29

Three-Way Handshake (4)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

•Connection will be cleanly
rejected on both sides J

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X
XREJECT

REJECT

TCP Connection State Machine

•Captures the states ([]) and transitions (->)
• A/B means event A triggers the transition, with action B

Both parties
run instances
of this state

machine

TCP Connections (2)

• Follow the path of the client:

TCP Connections (3)

• And the path of the server:

TCP Connections (4)

• Again, with states …

CSE 461 University of Washington 33

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CLOSEDCLOSED

TCP Connections (5)

•Finite state machines are a useful tool to specify and
check the handling of all cases that may occur

•TCP allows for simultaneous open
• i.e., both sides open instead of the client-server pattern
• Try at home to confirm it works J

CSE 461 University of Washington 34

Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides

shutdown independently

CSE 461 University of Washington 35

CSE 461 University of Washington 36

TCP Connection Release

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

CSE 461 University of Washington 37

TCP Connection Release (2)

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

TCP Connection State Machine

CSE 461 University of Washington 38

Both parties
run instances
of this state

machine

TCP Release

•Follow the active party

CSE 461 University of Washington 39

TCP Release (2)

•Follow the passive party

CSE 461 University of Washington 40

TCP Release (3)

•Again, with states …

CSE 461 University of Washington 41

1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACKFIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?

CSE 461 University of Washington 42

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent

for an orderly close
• Could otherwise interfere with a subsequent connection

CSE 461 University of Washington 43

