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Containers, etc.



What is in this box?
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Then came virtual machines (VMs)
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VMHW became too powerful
• Run multiple OSes on 

the same machine
• Cheaper that way

The hypervisor virtualizes the 
HW and fools the OS
• Provides isolation

The network thinks multiple hosts are connected
The hypervisor acts as a hub for inter-VM traffic 
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VMs in the cloud
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Forwarding between VMs involves a lookup from 
overlay address to underlay location
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Enter containers
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ContainerLighter-weight virtualization than VMs

• Libraries, not the full OS

Better isolation and packaging than apps
• Bundle the library versions you need



Container networking

Connect containers to the outside world 
and to each other
• Port conflicts among containers and other 

apps running on the same host
• High performance between containers on 

the same host
• (Virtual) private network between related 

containers (service mesh)
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Container networking: Host

Containers share the IP address (and networking stack) of the host. 
• Cannot handle port conflicts
• Minimal overhead



Container networking: Bridge

An internal network for containers on the same host. 
• Use NATs for outside world



Container networking: Overlay 

Create a private network across containers on different hosts
• VXLAN is a common way to do that 



CNI: Container networking interface 

Specification for writing plugins to configure network interfaces
• Decouple runtime from network configuration
• Plugins provide an interface that orchestration engines can use
• GitHub repo: https://github.com/containernetworking/cni

https://github.com/containernetworking/cni


Enter microservices

Instead of a developing a large monolithic application, structure the 
application as a bunch of communicating microservices
• Each microservice serves a (small) dedicated  function, e.g., authentication

• Can be written in any language
• Can evolve independent of other microservices
• Can be scaled independent of other microservices

• Each microservice gets a container 

But now you may have lots of services across lots of containers
• Containers need to be deployed and scaled è container orchestration
• Communication between services needs to be managed è service meshes



Container orchestration (Kubernetes)

Containers are wrapped in 
Pods which are run on a 
Cluster of
Nodes

Pods implement a service

https://sensu.io/blog/how-kubernetes-works



Service meshes (Istio) 

“Application defined networking”
• Secure inter-service communication 
• Load balancing for HTTP, gRPC, 

WebSocket, and TCP traffic
• Traffic behavior (routing rules, 

retries, failover)
• Access control, rate limits, and quotas
• Metrics, logs, and traces

https://istio-releases.github.io/v0.1/docs/concepts/what-is-istio/overview.html


