
CSE 461: Computer networks
Spring 2021

Ratul Mahajan

Containers, etc.

What is in this box?

Originally

Hardware

OS

App App

To network

Libs

Then came virtual machines (VMs)

Hardware

Hypervisor + OS

To network

Virtual HWVirtual HW

VMHW became too powerful
• Run multiple OSes on

the same machine
• Cheaper that way

The hypervisor virtualizes the
HW and fools the OS
• Provides isolation

The network thinks multiple hosts are connected
The hypervisor acts as a hub for inter-VM traffic

App App

OS

Libs

App App

OS

Libs

VMs in the cloud

Hardware

Hypervisor

Virtual HWVirtual HW

Hardware

Hypervisor

Virtual HWVirtual HW

Customer A Customer B Customer B Customer C

10.10.10.1 10.10.10.2

192.1.1.1 206.7.7.8

Underlay (physical)

Overlay (virtual)

Forwarding between VMs involves a lookup from
overlay address to underlay location

App App

OS

Libs

App App

OS

Libs

App App

OS

Libs

App App

OS

Libs

Enter containers

Hardware

OS

To network

App

Libs

Container runtime (Docker)

App

Libs
ContainerLighter-weight virtualization than VMs

• Libraries, not the full OS

Better isolation and packaging than apps
• Bundle the library versions you need

Container networking

Connect containers to the outside world
and to each other
• Port conflicts among containers and other

apps running on the same host
• High performance between containers on

the same host
• (Virtual) private network between related

containers (service mesh)
Hardware

OS

Container runtime (Docker)

App

Libs

App

Libs

Container networking: Host

Containers share the IP address (and networking stack) of the host.
• Cannot handle port conflicts
• Minimal overhead

Container networking: Bridge

An internal network for containers on the same host.
• Use NATs for outside world

Container networking: Overlay

Create a private network across containers on different hosts
• VXLAN is a common way to do that

CNI: Container networking interface

Specification for writing plugins to configure network interfaces
• Decouple runtime from network configuration
• Plugins provide an interface that orchestration engines can use
• GitHub repo: https://github.com/containernetworking/cni

https://github.com/containernetworking/cni

Enter microservices

Instead of a developing a large monolithic application, structure the
application as a bunch of communicating microservices
• Each microservice serves a (small) dedicated function, e.g., authentication

• Can be written in any language
• Can evolve independent of other microservices
• Can be scaled independent of other microservices

• Each microservice gets a container

But now you may have lots of services across lots of containers
• Containers need to be deployed and scaled è container orchestration
• Communication between services needs to be managed è service meshes

Container orchestration (Kubernetes)

Containers are wrapped in
Pods which are run on a
Cluster of
Nodes

Pods implement a service

https://sensu.io/blog/how-kubernetes-works

Service meshes (Istio)

“Application defined networking”
• Secure inter-service communication
• Load balancing for HTTP, gRPC,

WebSocket, and TCP traffic
• Traffic behavior (routing rules,

retries, failover)
• Access control, rate limits, and quotas
• Metrics, logs, and traces

https://istio-releases.github.io/v0.1/docs/concepts/what-is-istio/overview.html

