
CSE 461: Computer networks
Spring 2021

Ratul Mahajan



Building Massive Cloud 
Networks





Image from Microsoft Azure



https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html


HUGE data center networks (DCN)

• Thousands of routers

• Hundreds of thousands of servers



Google’s Oregon DC



Inside a Google DC



DCN topologies

• Big iron à Commodity switches



DCN topologies

• Big iron à Commodity switches
• 1 Gbps à 10 Gbps à 40 Gbps à 100 Gbps (soon)
• Copper à Fiber



Oversubscription ratio

• Ratio of bisection bandwidth across layers of hierarchy
• Key design parameter that trades-off cost and performance
• Higher oversubscription = lower cost but higher chance of congestion



DCN routing

• Spanning tree (L2) à OSPF/ISIS à BGP

• Each routers acts as its own autonomous system (AS)



Backbone 

• Provides global connectivity to DCs



Backbone 

• Provides global connectivity to DCs

• May also have two backbones
• A “public” backbone to connect to the outside world
• A ”private” backbone for inter-DC connectivity

• Uses transcontinental and transoceanic fiber cables

• Routing: ISIS/OSPF à MPLS à SDN-based traffic engineering



MPLS – Multi Protocol Label Switching

• Can explicitly program paths -- tunnels
• Allows taking non-shortest paths 

• Auto-bandwidth: Constrained-shortest paths first (CSPF)
• Fully distributed computation
• Estimate demand
• Find shortest path(s) that can fulfill the demand



SDN – Software Defined Networking

Decouple control and data plane
• Control plane populates the data plane entries (routing) 
• Data plane forwards traffic (forwarding)

Traditionally, routing and forwarding are in the same device

Control plane separation opens up lots of new opportunities
• Traffic engineering in backbones (next)
• Network virtualization (later)



SDN-based traffic engineering

Centralized computation of forwarding tables
• Compute “optimal” paths outside of the network
• Based on estimated load; also factor in application priorities



Using the cloud

• Use a software service (e.g., email) -- SaaS
• Use application building blocks (e.g., database) -- PaaS
• Launch VMs – IaaS 

• Build virtual networks
• Provides the same abstraction as physical networks but with virtual devices



Connecting to the cloud

• Public Internet
• VPN from your physical resources to the cloud
• BGP peering
• E.g., Amazon Direct Connect



The last ten years of the cloud

Scale, scale, scale … (mostly)

Relatively small conceptual shifts
• Lot of automation – minimize “snowflakes” and “fat fingers”
• Troubleshooting: Find needles in haystack

• E.g., Everflow [SIGCOMM ‘15], CorrOpt [SIGCOMM ‘17]
• Centralized control of resources

• E.g., SWAN [SIGCOMM ‘13], Footprint [NSDI ‘16]
• Low-latency technologies, e.g., RDMA



Bigger shifts are coming

Verification
• E.g., Batfish [NSDI ‘15], Minesweeper [SIGCOMM ’17]

High-level synthesis
• E.g., Propane [SIGCOMM ’16, PLDI ‘17]

Programmable NICs and switches
New physical layers
• E.g., ProjecToR [SIGCOMM ‘16], RAIL [NSDI ‘17]

Edge computing
Tighter coupling with applications
….



What is in the box?



Router

A computer optimized for routing and forwarding
• Operating system to manage resources
• Routing protocol implementations (e.g., BGP, OSPF)
• Lots of ports (not TCP ports)
• Chip to forward traffic between ports at “line rate”



Router (2)

Traditionally, a hardware-software combo sold by a router vendor
• Cisco
• Juniper
• Arista
• ….

But moving toward open systems
• SONiC – open source router OS from Microsoft
• Running on “commodity” hardware



Configuring the router

Routers are not plug-n-play
• Configure IP addresses
• Configure which protocols to run
• Configure those protocols
• Configure management aspects, e.g., DNS servers, NTP servers

Configuration uses custom syntax: 
• Example Cisco file: 

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/netwo
rks/example/configs/as1border2.cfg

https://github.com/batfish/pybatfish/blob/master/jupyter_notebooks/networks/example/configs/as1border2.cfg


Configuring the router (2)

Traditionally, configuration has been done manually
• Figure out the change, reason about it manually
• Log in to the router and apply the change
• High risk of logical errors and “fat fingers”

Increasingly, more automation
• Ansible, SaltStack, Nornir
• Batfish



Making a network out of routers

1. Get them connected



Making a network out of routers

1. Get them connected

2. Configure routers 
• Basic initial configuration provides connectivity to the router

3. Monitor, monitor, monitor

4. Configuration changes and maintenance


