
CSE 461 University of Washington 1

Where we are in the Course
• Starting the Application Layer!
– Builds distributed “network services” 

(DNS, Web) on Transport services

Physical
Link

Application

Network
Transport



CSE 461 University of Washington 2

Recall
• Application layer protocols are 

often part of an “app”
– But don’t need a GUI, e.g., DNS

TCP
IP

802.11

HTTP
app

OS

User-level

(NIC)



CSE 461 University of Washington 3

Recall (2)
• Application layer messages are 

often split over multiple packets
– Or may be aggregated in a packet …

802.11 IP TCP HTTP

802.11 IP TCP HTTP

802.11 IP TCP HTTP

HTTP



Application Communication Needs
• Vary widely with app; must build on Transport services

CSE 461 University of Washington 4

UDP

DNS

TCP

Series of variable 
length, reliable 
request/reply 

exchanges

Web

UDP

Real-time 
(unreliable) 

stream delivery

Skype

Later

Short, reliable 
request/reply 

exchanges

Message 
reliability!



Evolution of Internet Applications
• Always changing, and growing …

CSE 461 University of Washington 5

20101970 19901980 2000

Traffic

File Transfer (FTP)
Email (SMTP)

News (NTTP)

Secure Shell (ssh)Telnet

Email

Web (HTTP)
Web (CDNs)

P2P (BitTorrent)
Web (Video)

???



Evolution of Internet Applications (2)
• Robust Internet growth, esp. video, wireless and mobile
• By 2022, there will be more than 12 billion mobile-ready devices and IoT connections, up from about 9 

billion in 2017.
• By 2022, mobile networks will support more than 8 billion personal mobile devices and 4 billion IoT 

connections.
• The average mobile network speeds globally will increase more than three-fold from 8.7Mbps in 2017 to 

28.5Mbps by 2022.
• By 2022, mobile video will represent 79 percent of global mobile data traffic, up from 59 percent in 2017.
• By 2022, 79 percent of the world’s mobile data traffic will be video, up from 59 percent in 2017.
• Mobile offload exceeded cellular traffic by a ton in 2017; 54 percent of total mobile data traffic was 

offloaded onto the fixed-line network through Wi-Fi or femtocell in 2017.
• In 2017, 4G already carried 72 percent of the total mobile traffic and represented the largest share of mobile 

data traffic by network type. It will continue to grow faster than other networks, however the percentage 
share will go down slightly to 71 percent of all mobile data traffic by 2022.

CSE 461 University of Washington 6

https://www.networkworld.com/article/3207535/internet-of-things/what-is-iot-how-the-internet-of-things-works.html
https://www.networkworld.com/article/3330603/mobile-wireless/5g-versus-4g-how-speed-latency-and-application-support-differ.html


CSE 461 University of Washington 7

Topic
• The DNS (Domain Name System)
– Human-readable host names, and more
– Part 1: the distributed namespace

www.uw.edu?

Network

128.94.155.135



Names and Addresses
• Names are higher-level identifiers for resources
• Addresses are lower-level locators for resources

– Multiple levels, e.g. full name à email à IP address à Ethernet address
• Resolution (or lookup) is mapping a name to an address

CSE 461 University of Washington 8

Directory

Name, e.g.
“Andy Tanenbaum,”

or “flits.cs.vu.nl” 

Address, e.g.
“Vrijie Universiteit, Amsterdam”

or IPv4 “130.30.27.38”
Lookup



CSE 461 University of Washington 9

Before the DNS – HOSTS.TXT
• Directory was a file HOSTS.TXT 

regularly retrieved for all hosts from 
a central machine at the NIC 
(Network Information Center)

• Names were initially flat, became 
hierarchical (e.g., lcs.mit.edu) ~85 

• Neither manageable nor efficient    
as the ARPANET grew …



CSE 461 University of Washington 10

DNS
• A naming service to map between host 

names and their IP addresses (and more)
– www.uwa.edu.au à 130.95.128.140

• Goals:
– Easy to manage (esp. with multiple parties)
– Efficient (good performance, few resources)

• Approach:
– Distributed directory based on a hierarchical 

namespace
– Automated protocol to tie pieces together



DNS Namespace
• Hierarchical, starting from “.” (dot, typically omitted)

CSE 461 University of Washington 11



TLDs (Top-Level Domains)
• Run by ICANN (Internet Corp. for Assigned Names and Numbers)

– Starting in ‘98; naming is financial, political, and international  J

• 22+ generic TLDs
– Initially .com, .edu , .gov., .mil, .org, .net
– Added .aero, .museum, etc. from ’01 through .xxx in ’11
– Different TLDs have different usage policies

• ~250 country code TLDs
– Two letters, e.g., “.au”, plus international characters since 2010
– Widely commercialized, e.g., .tv (Tuvalu)
– Many domain hacks, e.g., instagr.am (Armenia), goo.gl (Greenland)

CSE 461 University of Washington 12



DNS Zones
• A zone is a contiguous portion of the namespace

CSE 461 University of Washington 13

A zoneDelegation



CSE 461 University of Washington 14

DNS Zones (2)
• Zones are the basis for distribution
– EDU Registrar administers .edu
– UW administers washington.edu
– CS&E administers cs.washington.edu

• Each zone has a nameserver to 
contact for information about it
– Zone must include contacts for 

delegations, e.g., .edu knows 
nameserver for washington.edu



CSE 461 University of Washington 15

Topic
• The DNS (Domain Name System)
– Human-readable host names, and more
– Part 2: Name resolution

www.uw.edu?

Network

128.94.155.135



Recall
• A zone is a contiguous portion of the namespace
– Each zone is managed by one or more nameservers

CSE 461 University of Washington 16

A zoneDelegation



CSE 461 University of Washington 17

DNS Resolution
• DNS protocol lets a host resolve any 

host name (domain) to IP address
• If unknown, can start with the root 

nameserver and work down zones
• Let’s see an example first …



DNS Resolution (2)
• flits.cs.vu.nl resolves robot.cs.washington.edu

CSE 461 University of Washington 18



CSE 461 University of Washington 19

Iterative vs. Recursive Queries
• Recursive query
– Nameserver completes resolution  

and returns the final answer
– E.g., flits à local nameserver

• Iterative query
– Nameserver returns the answer or 

who to contact next for the answer
– E.g., local nameserver à all others



CSE 461 University of Washington 20

Iterative vs. Recursive Queries (2)
• Recursive query
– Lets server offload client burden 

(simple resolver) for manageability
– Lets server cache over a pool of  

clients for better performance

• Iterative query
– Lets server “file and forget”
– Easy to build high load servers



CSE 461 University of Washington 21

Caching
• Resolution latency should be low
– Adds delay to web browsing

• Cache query/responses to answer 
future queries immediately
– Including partial (iterative) answers
– Responses carry a TTL for caching

Nameserver

query out

response
Cache



Caching (2)
• flits.cs.vu.nl now resolves eng.washington.edu
– And previous resolutions cut out most of the process

CSE 461 University of Washington 22

1: query 2: query

UW nameserver
(for washington.edu)

3: eng.washington.edu4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

I know the server for 
washington.edu!

Cache



CSE 461 University of Washington 23

Local Nameservers
• Local nameservers typically run by 

IT (enterprise, ISP)
– But may be your host or AP
– Or alternatives e.g., Google public DNS

• Clients need to be able to contact 
their local nameservers
– Typically configured via DHCP



CSE 461 University of Washington 24

Root Nameservers
• Root (dot) is served by 13 server names

– a.root-servers.net to m.root-servers.net
– All nameservers need root IP addresses
– Handled via configuration file (named.ca)

• There are >250 distributed server instances
– Highly reachable, reliable service
– Most servers are reached by IP anycast

(Multiple locations advertise same IP! Routes 
take client to the closest one. See §5.2.9)

– Servers are IPv4 and IPv6 reachable



Root Server Deployment

CSE 461 University of Washington 25

Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current deployment.



CSE 461 University of Washington 26

DNS Protocol
• Query and response messages

– Built on UDP messages, port 53
– ARQ for reliability; server is stateless!
– Messages linked by a 16-bit ID field

Query

Response

Time

Client Server
ID=0x1234

ID=0x1234



CSE 461 University of Washington 27

DNS Protocol (2)
• Service reliability via replicas
– Run multiple nameservers for domain
– Return the list; clients use one answer
– Helps distribute load too

NS for uw.edu?

A

B

C

Use A, B or C



CSE 461 University of Washington 28

DNS Protocol (3)
• Security is a major issue

– Compromise redirects to wrong site!
– Not part of initial protocols ..

• DNSSEC (DNS Security Extensions)
– Long under development, now partially 

deployed. We’ll look at it later

Um, security??



CSE 461 University of Washington 29

Topic
• HTTP, (HyperText Transfer Protocol)
– Basis for fetching Web pages

request
Network



CSE 461 University of Washington 30

Sir Tim Berners-Lee (1955–) 
• Inventor of the Web
– Dominant Internet app since mid 90s
– He now directs the W3C

• Developed Web at CERN in ‘89
– Browser, server and first HTTP
– Popularized via Mosaic (‘93), Netscape
– First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons



Web Context 

CSE 461 University of Washington 31

HTTP request

HTTP response

Page as a set of related 
HTTP transactions



CSE 461 University of Washington 32

Web Protocol Context
• HTTP is a request/response protocol 

for fetching Web resources
– Runs on TCP, typically port 80
– Part of browser/server app

TCP
IP

802.11

browser

HTTP
TCP
IP

802.11

server

HTTP
request

response



CSE 461 University of Washington 33

Fetching a Web page with HTTP
• Start with the page URL:

http://en.wikipedia.org/wiki/Vegemite

• Steps:
– Resolve the server to IP address (DNS)
– Set up TCP connection to the server
– Send HTTP request for the page
– (Await HTTP response for the page)
– Execute / fetch embedded resources / render
– Clean up any idle TCP connections

Protocol Page on serverServer

**



Static vs Dynamic Web pages
• Static web page is a file contents, e.g., image
• Dynamic web page is the result of program execution
– Javascript on client, PHP on server, or both 

CSE 461 University of Washington 34



Evolution of HTTP
• Consider security (SSL/TLS for HTTPS) later

CSE 461 University of Washington 35

20101990 20001995 2005

1.0 developed

1.1 developed
(persistent connections)

0.9
RFC 1945

RFC 2068, 2109
RFC 2616

Cookies
SSL 2.0

SPDY
(HTTP 2.0)Proliferation of 

content types and 
browser/server 

scripting 
technologiesRFC 2965



CSE 461 University of Washington 36

HTTP Protocol
• Originally a simple protocol, with 

many options added over time
– Text-based commands, headers

• Try it yourself:
– As a “browser” fetching a URL
– Run “telnet en.wikipedia.org 80”
– Type “GET /wiki/Vegemite HTTP/1.0”      

to server followed by a blank line
– Server will return HTTP response with   

the page contents (or other info)



CSE 461 University of Washington 37

HTTP Protocol (2)
• Commands used in the request

Method Description
GET Read a Web page
HEAD Read a Web page's header
POST Append to a Web page
PUT Store a Web page
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT Connect through a proxy
OPTIONS Query options for a page

Fetch
page

Upload
data



HTTP Protocol (3)
• Codes returned with the response

CSE 461 University of Washington 38

Code Meaning Examples
1xx Information 100 = server agrees to handle client's request
2xx Success 200 = request succeeded; 204 = no content present
3xx Redirection 301 = page moved; 304 = cached page still valid
4xx Client error 403 = forbidden page; 404 = page not found
5xx Server error 500 = internal server error; 503 = try again later

Yes!



CSE 461 University of Washington 39

Topic
• Performance of HTTP
– Parallel and persistent connections

request
Network



CSE 461 University of Washington 40

PLT (Page Load Time)
• PLT is the key measure of web 

performance 
– From click until user sees page
– Small increases in PLT decrease sales

• PLT depends on many factors
– Structure of page/content
– HTTP (and TCP!) protocol
– Network RTT and bandwidth



CSE 461 University of Washington 41

Early Performance
• HTTP/1.0 uses one TCP connection 

to fetch one web resource
– Made HTTP very easy to build
– But gave fairly poor PLT …

Client Server



CSE 461 University of Washington 42

Early Performance (2)
• HTTP/1.0 used one TCP connection 

to fetch one web resource
– Made HTTP very easy to build
– But gave fairly poor PLT…



CSE 461 University of Washington 43

Early Performance (3)
• Many reasons why PLT is larger than 

necessary
– Sequential request/responses, even  

when to different servers
– Multiple TCP connection setups to         

the same server
– Multiple TCP slow-start phases

• Network is not used effectively
– Worse with many small resources / page



CSE 461 University of Washington 44

Ways to Decrease PLT
1. Reduce content size for transfer

– Smaller images, gzip
2. Change HTTP to make better             

use of available bandwidth
3. Change HTTP to avoid repeated 

transfers of the same content
– Caching, and proxies

4. Move content closer to client
– CDNs [later]

This
time

Later

Next
time



CSE 461 University of Washington 45

Parallel Connections
• One simple way to reduce PLT

– Browser runs multiple (8, say) HTTP   
instances in parallel

– Server is unchanged; already handled 
concurrent requests for many clients

• How does this help?
– Single HTTP wasn’t using network much …
– So parallel connections aren’t slowed much
– Pulls in completion time of last fetch



CSE 461 University of Washington 46

Persistent Connections
• Parallel connections compete with 

each other for network resources
– 1 parallel client ≈ 8 sequential clients?
– Exacerbates network bursts, and loss

• Persistent connection alternative
– Make 1 TCP connection to 1 server
– Use it for multiple HTTP requests



Persistent Connections (2)

CSE 461 University of Washington 47

Client Server Client Server Client Server

Persistent +Pipelining



Persistent Connections (3)

CSE 461 University of Washington 48

One request per connection

Sequential requests 
per connection

Pipelined requests 
per connection



CSE 461 University of Washington 49

Persistent Connections (4)
• Widely used as part of HTTP/1.1
– Supports optional pipelining
– PLT benefits depending on page 

structure, but easy on network

• Issues with persistent connections
– How long to keep TCP connection?
– Can it be slower? (Yes. But why?)



CSE 461 University of Washington 50

Topic

• HTTP caching and proxies
– Enabling content reuse

Server
Clients

Proxy
Cache



CSE 461 University of Washington 51

Web Caching
• Users often revisit web pages
– Big win from reusing local copy!
– This is caching

• Key question:
– When is it OK to reuse local copy?

NetworkCache

Local copies

Server



CSE 461 University of Washington 52

Web Caching (2)
• Locally determine copy is still valid
– Based on expiry information such as

“Expires” header from server
– Or use a heuristic to guess (cacheable, 

freshly valid, not modified recently) 
– Content is then available right away

NetworkCache
Server



CSE 461 University of Washington 53

Web Caching (3)
• Revalidate copy with remote server
– Based on timestamp of copy such as 

“Last-Modified” header from server
– Or based on content of copy such as 

“Etag” header from server
– Content is available after 1 RTT

NetworkCache
Server



Web Caching (4)
• Putting the pieces together:

CSE 461 University of Washington 54



CSE 461 University of Washington 55

Web Proxies
• Place intermediary between pool of 

clients and external web servers
– Benefits for clients include greater 

caching and security checking
– Organizational access policies too!

• Proxy caching
– Clients benefit from larger, shared cache
– Benefits limited by secure / dynamic 

content, as well as “long tail”



Web Proxies (2)
• Clients contact proxy; proxy contacts server

CSE 461 University of Washington 56

Cache

Near client

Far from client



CSE 461 University of Washington 57

Topic
• CDNs (Content Delivery Networks)
– Efficient distribution of popular 

content; faster delivery for clients

Content
Replica

Consumers



CSE 461 University of Washington 58

Context
• As the web took off in the 90s, traffic 

volumes grew and grew. This:
1. Concentrated load on popular servers
2. Led to congested networks and need   

to provision more bandwidth
3. Gave a poor user experience

• Idea:
– Place popular content near clients
– Helps with all three issues above



CSE 461 University of Washington 59

Before CDNs
• Sending content from the source to 

4 users takes 4 x 3 = 12 “network 
hops” in the example

Source

User

User

. . .



CSE 461 University of Washington 60

After CDNs
• Sending content via replicas takes 

only 4 + 2 = 6 “network hops”

Source

User

User

. . .
Replica



CSE 461 University of Washington 61

After CDNs (2)
• Benefits assuming popular content:
– Reduces server, network load
– Improves user experience (PLT)

Source

User

User

. . .
Replica



CSE 461 University of Washington 62

Popularity of Content
• Zipf’s Law: few popular items, many 

unpopular ones; both matter

Zipf popularity
(kth item is 1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)



CSE 461 University of Washington 63

How to place content near clients? 
• Use browser and proxy caches
– Helps, but limited to one client or 

clients in one organization

• Want to place replicas across the 
Internet for use by all nearby clients
– Done by clever use of DNS



Content Delivery Network

CSE 461 University of Washington 64



Content Delivery Network (2)
• DNS resolution of site gives different answers to clients
– Tell each client the site is the nearest replica (map client IP)

CSE 461 University of Washington 65



Consumer

site

CSE 461 University of Washington 66

Business Model
• Clever model pioneered by Akamai
– Placing site replica at an ISP is win-win
– Improves site experience and reduces 

bandwidth usage of ISP

ISP
User

User

. . .
Replica


