Section 7: Project 3 Intro

 $\bullet \bullet \bullet$

CSE 461 Computer Networks

Administrivia

- Mini Quiz on BGP
- Assignment 4 is due today.
- Assignment 5 will be released tomorrow
- Project 3 is released! It is due next Thursday!

Project 3: Bufferbloat

What is Bufferbloat?

From Wikipedia, "bufferbloat is a cause of high latency in packet-switched networks caused by excess buffering of packets"

Project 3

- We will simulate bufferbloat on our mininet network, compare TCP Reno and TCP BBR, and plot the latency and queue length graphs
- The setup is similar to project 2
 - Mininet on the Vagrant VM
 - Python3
 - Given a skeleton code to modify. Don't forget to check other files which might contain useful helper functions

Project 3: Part 1

- Part 1: Topology Setup
 - Similar to project 2 part 1
 - Except need to specify link characteristics (bandwidth, minimum RTT, max queue size)
 - Look into Mininet documentation!

Project 3: Part 2 & 3

- Part 2: TCP Reno
 - Modify
 - run.sh

A script that runs the experiment with specified parameters

- Run bufferbloat.py on q=20 and q=100
- Generate latency and queue length graphs
- bufferbloat.py

Setup the mininet topology and the experiment

- Write shell commands to do the measurements
- Part 3: TCP BBR
 - Modify Part 2 to run the experiment using BBR

The Experiment

Complete bufferbloat.py to run the following in parallel

- Long-lived TCP flow between h1 and h2 (iperf/iperf3)
 - Fills bottleneck router
- Ping train between h1 and h2
 - Measure latency between hosts
- Measure time to `curl` down webpage from h1

Goal: See how queue size behaves under congestion, and how that affects latency/download times

Long-lived TCP Flow

- Starter code sets up iperf server on h2
- Goal: start iperf client on h1, connect to h2
 - Should be "long-lasting", i.e. for time specified by --time parameter
- How do I connect to a certain IP or make the connection long-lasting?
 - man pages are your friend!
 - \circ type `man iperf` in a Linux terminal

Ping Train

• Goal: Start "ping train" between h1 and h2

- Pings should occur at 10 per second interval
- Should run for entire experiment
- How do I specify the ping interval and how long the ping train runs?
 - man pages are your friend!
 - \circ type `man ping` in a Linux terminal
- Write the RTTs recorded from `ping` to {args.dir}/ping.txt
 - See starter code comments for more detail

Download Webpage with curl

- Starter code spawns webserver on h1
- Goal: Use `curl` to measure fetch time to download webpage from h1
 - Starter code has hint on formatting curl command
 - Make sure `curl` doesn't output an error
 - Errors report very small latency
- No need to plot fetch times

Q = 20

Plotting

- Starter code contains scripts for plotting, `plot_queue.py`, `plot_ping.py`
 - Expects queue occupancy in \$dir/q.txt, ping latency in \$dir/ping.txt
 - Plots are useful for debugging!

Q = 100

- Part 3, run same experiments with TCP BBR instead of TCP Reno
 - How do you expect the graph outputs to differ?

Note

- Sudo mn -c to restart mininet
- Run CLI() in python to enter an interactive shell. This will be useful for debugging/ testing commands to run in h1/h2.
- This is a common mistake in previous quarters! Make sure that your curl command is able to fetch the webpage and receives a valid response from the server before you use its time measurement

Deliverables

- A zip file of
 - Final Code
 - README
 - 8 Plots