
NETWORKS

1

Case Study
BufferBloat: What’s Wrong with the Internet?

A discussion with Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys

Internet delays are now as common as they are maddening. That means they end up affecting system
engineers just like all the rest of us. And when system engineers get irritated, they often go looking for what’s
at the root of the problem. Take Jim Gettys, for example. His slow home network had repeatedly proved to be
the source of considerable frustration, so he set out to determine what was wrong, and he even coined a term
for what he found: bufferbloat.

Bufferbloat refers to excess buffering inside a network, resulting in high latency and reduced throughput.
Some buffering is needed; it provides space to queue packets waiting for transmission, thus minimizing data
loss. In the past, the high cost of memory kept buffers fairly small, so they filled quickly and packets began
to drop shortly after the link became saturated, signaling to the communications protocol the presence of
congestion and thus the need for compensating adjustments.

Because memory now is significantly cheaper than it used to be, buffering has been overdone in all
manner of network devices, without consideration for the consequences. Manufacturers have reflexively acted
to prevent any and all packet loss and, by doing so, have inadvertently defeated a critical TCP congestion-
detection mechanism, with the result being worsened congestion and increased latency.

Now that the problem has been diagnosed, people are working feverishly to fix it. This case study considers
the extent of the bufferbloat problem and its potential implications. Working to steer the discussion is Vint
Cerf, popularly known as one of the “fathers of the Internet.” As the co-designer of the TCP/IP protocols, Cerf
did indeed play a key role in developing the Internet and related packet data and security technologies while at
Stanford University from 1972-1976 and with DARPA (the U.S. Department of Defense’s Advanced Research
Projects Agency) from 1976-1982. He currently serves as Google’s chief Internet evangelist.

Van Jacobson, presently a research fellow at PARC where he leads the networking research program, is also
central to this discussion. Considered one of the world’s leading authorities on TCP, he helped develop the
RED (random early detection) queue management algorithm that has been widely credited with allowing the
Internet to grow and meet ever-increasing throughput demands over the years. Prior to joining PARC, Jacobson
was a chief scientist at Cisco Systems and later at Packet Design Networks.

Also participating is Nick Weaver, a researcher at ICSI (International Computer Science Institute in
Berkeley where he was part of the team that developed Netalyzr, a tool that analyzes network connections and
has been instrumental in detecting bufferbloat and measuring its impact across the Internet.

Rounding out the discussion is Gettys, who edited the HTTP/1.1 specification and was a co-designer of the
X Window System. He now is a member of the technical staff at Alcatel-Lucent Bell Labs, where he focuses
on systems design and engineering, protocol design, and free software development.

VINT CERF What caused you to do the analysis that led you to conclude you had problems with your
home network related to buffers in intermediate devices?
JIM GETTYS I was running some bandwidth tests on an old IPsec (Internet Protocol Security)-like
device that belongs to Bell Labs and observed latencies of as much as 1.2 seconds whenever the
device was running as fast it could. That didn’t entirely surprise me, but then I happened to run the

NETWORKS

2

same test without the IPsec box in the way, and I ended up with the same result. With 1.2-second
latency accompanied by horrible jitter, my home network obviously needed some help. The rule of
thumb for good telephony is 150-millisecond latency at most, and my network had nearly 10 times
that much.

My first thought was that the problem might relate to a feature called PowerBoost that comes as
part of my home service from Comcast. That led me to drop a note to Rich Woundy at Comcast
since his name appears on the Internet draft for that feature. He lives in the next town over from me,
so we arranged to get together for lunch. During that lunch, Rich provided me with several pieces to
the puzzle. To begin with, he suggested my problem might have to do with the excessive buffering
in a device in my path rather than with the PowerBoost feature. He also pointed out that ICSI has
a great tool called Netalyzr that helps you figure out what your buffering is. Also, much to my
surprise, he said a number of ISPs had told him they were running without any queue management
whatsoever—that is, they weren’t running RED on any of their routers or edge devices.

The very next day I managed to get a wonderful trace. I had been having trouble reproducing the
problem I’d experienced earlier, but since I was using a more recent cable modem this time around,
I had a trivial one-line command for reproducing the problem. The resulting SmokePing plot clearly
showed the severity of the problem, and that motivated me to take a packet-capture so I could see
just what in the world was going on. About a week later, I saw basically the same signature on a
Verizon FiOS [a bundled home communications service operating over a fiber network], and that
surprised me. Anyway, it became clear that what I’d been experiencing on my home network wasn’t
unique to cable modems.
VC I assume you weren’t the only one making noises about these sorts of problems?
JG I’d been hearing similar complaints all along. In fact, Dave Reed [Internet network architect, now
with SAP Labs] about a year earlier had reported problems in 3G networks that also appeared to be
caused by excessive buffering. He was ultimately ignored when he publicized his concerns, but I’ve
since been able to confirm that Dave was right. In his case, he would see daily high latency without
much packet loss during the day, and then the latency would fall back down again at night as flow
on the overall network dropped.

Dave Clark [Internet network architect, currently senior research scientist at MIT] had noticed
that the DSLAM (Digital Subscriber Line Access Multiplexer) his micro-ISP runs had way too much
buffering—leading to as much as six seconds of latency. And this is something he’d observed six
years earlier, which is what had led him to warn Rich Woundy of the possible problem.
VC Perhaps there’s an important life lesson here suggesting you may not want to simply throw away
outliers on the grounds they’re probably just flukes. When outliers show up, it might be a good idea
to find out why.
NICK WEAVER But when testing for this particular problem, the outliers actually prove to be the
good networks.
JG Without Netalyzr, I never would have known for sure whether what I’d been observing was
anything more than just a couple of flukes. After seeing the Netalyzr data, however, I could see how
widespread the problem really was. I can still remember the day when I first saw the data for the
Internet as a whole plotted out. That was rather horrifying.
NW It’s actually a pretty straightforward test that allowed us to capture all that data. In putting
together Netalyzr at ICSI, we started out with a design philosophy that one anonymous commenter

NETWORKS

3

later captured very nicely: “This brings new meaning to the phrase, ‘Bang it with a wrench.’”
Basically, we just set out to hammer on everything—except we weren’t interested in doing a
bandwidth test since there were plenty of good ones out there already.

I remembered, however, that Nick McKeown and others had ranted about how amazingly over-
buffered home networks often proved to be, so buffering seemed like a natural thing to test for. It
turns out that would also give us a bandwidth test as a side consequence. Thus we developed a pretty
simple test. Over just a 10-second period, it sends a packet and then waits for a packet to return.
Then each time it receives a packet back, it sends two more. It either sends large packets and receives
small ones in return, or it sends small packets and receives large ones. During the last five seconds of
that 10-second period, it just measures the latency under load in comparison to the latency without
load. It’s essentially just a simple way to stress out the network.

We didn’t get around to analyzing all that data until a few months after releasing the tool. Then
what we saw were these very pretty graphs that gave us reasonable confidence that a huge fraction of
the networks we had just tested could not possibly exhibit good behavior under load. That was a very
scary discovery.
JG Horrifying, I think.
NW It wasn’t quite so horrifying for me because I’d already effectively taken steps to mitigate the
problem on my own network—namely, I’d paid for a higher class of service on my home network
specifically to get better behavior under load. You can do that because the buffers are all sized in
bytes. So if you pay for the 4x bandwidth service, your buffer will be 4x smaller in terms of delay,
and that ends up acting as a boundary on how bad things can get under load. And I’ve taken steps to
reduce other potential problems — by installing multiple access points in my home, for example.
JG The problem is that the next generation of equipment will come out with even larger buffers.
That’s part of why I was having trouble initially reproducing this problem with DOCSIS (Data
over Cable Service Interface Specification) 3.0 modems. That is, because I had even more extreme
buffering than I’d had before, it took even longer to fill up the buffer and get it to start misbehaving.
VC What I think you’ve just outlined is a measure of goodness that later proved to be exactly the
wrong thing to do. At first, the equipment manufacturers believed that adding more buffers would
be a good thing, primarily to handle increased traffic volumes and provide for fair access to capacity.
Of course, it has also become increasingly difficult to buy a chip that doesn’t have a lot of memory in
it.
NW Also, to the degree that people have been testing at all, they’ve been testing for latency or
bandwidth. The problem we’re discussing is one of latency under load, so if you test only quiescent
latency, you won’t notice it; and if you test only bandwidth, you’ll never notice it. Unless you’re
testing specifically for behavior under load, you won’t even be aware this is happening.
VAN JACOBSON I think there’s a deeper problem. We know the cause of these big queues is data
piling up wherever there’s a fast-to-slow transition in the network. That generally happens either
going from the Internet core out to a subscriber (as with YouTube videos) or from the subscriber back
into the core, where a fast home network such as a 54-megabit wireless hits a slow 1- to 2-megabit
Internet connection.

In Jim’s case, a Linux machine defaulted to about a megabyte of data in transit, which amounts to
several seconds’ worth of delay over a 2-megabit line. That’s the way Linux ships, and that’s the way
the YouTube servers come configured out of the box. Unless those things get reconfigured, they send
a megabyte.

NETWORKS

4

All that data flows through the network until it piles up at the subscriber link. If some
manufacturer were to produce a home router with a very small buffer, data would get thrown away,
and that manufacturer would very quickly get a reputation for making crummy routers. Then
a competitor would be sure to say, “That router has a 90 percent loss rate, so you want my box
instead since it’s got enough memory to avoid losing anything at all.” That’s how we end up with
marketplace pressure on manufacturers to put bigger and bigger buffers into their equipment.
JG This is not just a phenomenon at the broadband edge. In the course of pulling on a string to
figure out why my home router was misbehaving so badly, I discovered that all our operating
systems—Linux, Windows, and Macintosh alike—also are guilty of resorting to excessive buffering.
This phenomenon pervades the whole path. You definitely can’t fix it at any single location.
VJ Think of this as the network version of “Mutually Assured Destruction.” Unless you can get
everybody to cooperate on reducing the buffers for every piece of equipment, the right strategy for
any provider is to increase its buffer. You can make your Wi-Fi work better if you put more buffer
into it. That’s also the way to make your router work better and to make your end system work better.
JG I would argue that point. You can make things “better” in some very limited ways. But if all
you’re measuring is bandwidth, then you don’t see all the havoc you’re creating by contributing to
the failure of even routine network services such as lookups of IP addresses. Those kinds of failures
are now commonplace in part because these big buffers and the long delays they’re causing are
working at odds with the underlying protocols.
VJ You’re preaching to the choir, Jim.

n n
Excess buffering largely defeats TCP’s congestion-avoidance mechanisms, which rely on a low level of timely
packet drops to detect congestion. With buffering, once packets reach a chokepoint, they start to queue. If more
packets come in than can be transmitted, the queue lengthens. The more packets in the queue, the higher the
latency. Eventually packets are dropped, notifying the communications protocol of the congestion.

Bufferbloat allows these queues to grow too long before any packets are dropped. As a result, the buffers
become flooded with packets and then take time to drain before they can allow in any additional packets. All
the end user sees of this is slowed response. Services that require low latency—such as network gaming, VoIP,
or chat programs—can slow to the point of becoming unusable.

Also, because of the widespread nature of the problem, there are growing concerns that the stability of the

Internet itself could be compromised.

VC The key issue we’ve been talking about is that all this excessive buffering ends up breaking many
of the timeout mechanisms built into our network protocols. That gets us to the question of just how
bad the problem really is and how much worse it’s likely to get as the speeds out at the edge of the
net continue to increase. I’d assume the problem is only going to get worse as the buffers start to fill
up even faster.
NW No, actually, that will make things better. While it’s true that the larger problem has to do with
buffers that are too big, if you look at your own situation in terms of time rather than capacity and
you can manage to double the performance on your link, then you ought to be able to cut your delay
by half.
VC Good point. The issue here seems to revolve around how long it takes for the buffer to fill up. If

NETWORKS

5

it’s on a slow line, it’s going to take forever, and then the buffer is going to hold all that stuff and
permanently impair the round-trip time.
JG The fundamental observation, however, is a bit subtler in that there actually is no single right
size for a buffer. Think about wireless, for example, where you can easily have two or three orders
of magnitude variance in bandwidth. We have broadband systems that can run as much as 100
megabits or more, but at the low end, they provision only 10 megabits or less. That’s an order-of-
magnitude swing right there. No single static size makes sense all the time.
NW What’s even worse is that if you think about it in terms of time—such that you size the buffer
for X milliseconds rather than X kilobytes (which you can do with just a little more logic)—that
still doesn’t entirely do the job. It gives you a 90 percent solution because that will still induce some
latency under load. It will be bounded just to the point where it’s about the maximum latency—or
about the minimum latency under load for a simple queue if you’re still looking to achieve full-TCP
throughput.
VJ It won’t even work with Jim’s Wi-Fi example. Move your Wi-Fi receiver two inches and your
throughput can go from 100 megabits down to a megabit, which means your queue delay will go up
by a factor of 100. There’s just no static buffer-management strategy—and no static buffer size—that
will work in that situation.
VC That suggests anything that’s going to work will have to be dynamic and adaptable. But it also
raises the odd problem that your device at the edge of the net might end up communicating with
devices at various locations in the network with different path dynamics. That gets to a question
about how you go about observing flows and distinguishing between them. Is that something that
would become necessary if we were to move at all toward dynamically adapting the buffer delay (if
I might be permitted to use that term rather than buffer size) for all the various flows you might be
trying to engage with at any given time?
VJ No. What you’ve actually got moving around on the Internet are packets, and it’s hard to tell
which packets constitute a “flow.” What we do know, however, is that the data piles up wherever
there’s a fast-to-slow transition, and nowhere else. The router on the upstream end of that transition
knows there’s a big honking queue piling up. If you can somehow mitigate the queue at the point
where you can actually see it forming, or at least signal the endpoints about the queue they’re
creating and tell them they need to deal with that, you don’t need to do any sort of complicated flow
analysis.
VC Could this queue show up anywhere on the net, and not just at the edges?
VJ Theoretically, yes. But I think that theoretical conclusion has impeded a lot of work in this
area because it leads people to think about the problem as potentially being anywhere. Yet the
economics of the Internet tends to ensure a very high-bandwidth core where we aggregate traffic
from a lot of low-bandwidth links. Remember also that the individual subscribers from whom you’re
aggregating aren’t correlated, so as you add together their different traffic streams, the traffic tends
to get smoother. This is the point Nick McKeown made a few years ago when he was talking about
excessive buffering in the core. There’s really no need for humongous buffers there since you’re
dealing with these huge aggregates, resulting in traffic that’s pretty smooth.
NW The other issue regarding the Internet core is that the buffer gets to be really expensive once
you start talking about 10-gigabit-plus links. Interestingly, if you talk to the Internet2 folks, their
complaints about core routers have to do with there not being enough buffering, since their test

NETWORKS

6

involves single-stream TCP or few-stream TCP throughput on 10-gigabit links. For that, you actually
do need a good amount of buffering, but that’s just not economically feasible right now for a lot of
those core routers.
VJ But that is something else that has impeded progress here—all that R&D aimed at maximizing
the bandwidth between supercomputer centers. Remember that most of the network research
in the U.S. has been funded so far by the NSF (National Science Foundation) with the goal of
demonstrating very high bandwidth between academic institutions. This is great for the .01 percent
of the Internet community that has those links available to them, but it doesn’t do much good for
the billion other people in the world who have 2-megabit or less.

We’ve put a lot of effort into protocol, router, and algorithm development that makes it possible
for a single TCP to saturate a 40-gigabit link, but we haven’t put anything even remotely like that
effort into producing usable cellphone data links, DSL links, or home-cable links. That’s where the
really hard problem is because it requires that you start to think about how the buffering actually
works and how it turns into latency.
VC We actually are circling around the fact that this is a hard problem because of the environment.
We should talk about whether we have a crisis on our hands right now and, if so, what’s to be done
about it.
JG We don’t even know whether the current state of things is going to remain stable. I get very
nervous when I consider the spasmodic behavior of just a single TCP flow, with all these wild
excursions going on much of the time. It certainly seems to me that our current situation is not at all
static.

We’re seeing many new applications—such as streaming video and off-site system backup, for
example—that are far more likely to saturate the links. All these applications are starting to become
much more routine at the same time that Windows XP is retiring. That’s actually a significant
milestone because Windows XP didn’t implement window scaling, so it tended not to saturate links
in quite the same way as anything released more recently. Maybe I’m being paranoid, but I really
don’t like what I’m seeing right now.
NW Does any major TCP stack exist now that doesn’t do proper window scaling and so doesn’t
saturate everything up to a near-gigabit link?
JG I think they all do window scaling now—at least anything more recent than Windows XP.
Windows, Mac OS X, and Linux are all very happy to run up to multigigabit speeds.
VJ But the packet output isn’t driven by window scaling. Window scaling just gives you room to
expand the window, but it expands only if the system defaults to a large window. For years, the
default window was sized to fit the roughly 100-millisecond/1-mbps TCP paths you typically found
back then. At some point over the past five or six years, people have decided that the common path
ought to be considered a gigabit or more. As a consequence, the buffer size has been bumped up to
more than a megabyte.
NW Unfortunately, that’s almost exactly the case. If you look at my house, in fact, going from my
computer to the file server, I’ve got a gig link at 10-plus milliseconds.
VJ Have you done the experiment of varying the window size and then looking at throughput
to your file server as a function of the window size to see whether or not you actually need the
megabyte?
NW No, I have not.

NETWORKS

7

VJ Well, I have, and the bandwidth flattops at an eight-packet window. I’m talking about a Linux file
server running a very current kernel. Typically, the situation is that you’re in a home environment
with large bandwidth and very short delays, or you’re going out over the Internet where you’re going
to encounter small bandwidth and much longer delays—often 10 times or more longer than what
you have at home. You could pick a window size that was appropriate for the Internet—something
like 100 kilobytes, which is 10 kilobits into 100 milliseconds—and that would work more than
adequately for your home environment as well.

But that just isn’t what we see anymore. Instead, we ship several megabytes, and that’s when you
hear the complaint: “Oh my God, I’m seeing a second of delay.” Well, yes, of course. That’s how your
system is configured.
JG What’s more, you find that sort of thing in several different places. The operating system itself
may have problems. If you look at the device drivers, you’ll find they’ve also grown some very large
buffers of their own. Basically, whenever you look inside any of our current operating systems, you’ll
find a recurring theme of bufferbloat at multiple layers.

That’s actually part of the problem: people are thinking of this as a system of layers, where they
don’t have to worry about how everything actually works, either above them or below them. They
aren’t really thinking through all the consequences of what they’re doing—and it shows!

n n
If we do indeed face an impending crisis, what’s to be done? Bufferbloat presents a hard problem, with no
single right solution. And making headway to mitigate the current situation will require a multipronged effort
that involves ISPs, operating system implementers, application vendors, and equipment manufacturers.

Since network hardware is clearly a primary culprit, it would seem that reducing buffer size is all that
ought to really be necessary. But buffer size cannot be configured on most routers and switches. Nor can buffer
size be static. It must be sized dynamically, meaning that both hardware and software modifications will be
required.

There also are some new queue-management algorithms that are currently being studied. Although the
classic RED queue-management approach serves as a starting point for some of this research, it is not itself
equal to the present challenge. Still, efforts to create an improved version of RED are already under way.

VC It certainly sounds as though equipment with smaller buffers would help keep a lot of the worst
cases from occurring simply because there wouldn’t be enough buffer space to create as much of a
problem. The other possibility, I guess, would be to provide a way to discard backed-up packets and
send a summary report back to the source of congestion whenever you see queues building up. But
that gets to this awkward problem of not knowing what the source of the congestion might be unless
you’re monitoring source/destination pair traffic or something along those lines. Given that we now
seem to know something about the nature of the problem, can you speculate a little on what, if
anything, might be done to attack it?
VJ The approach you just described was the basic idea behind RED: whenever you’ve got a big queue,
you should notify one or more of the endpoints that there’s a problem so they will reduce the
window, which in turn will reduce the queue. That provides an alternative to tracking flows, which
at best is a very state-intensive problem. And with IPv6, it can turn into an impossible problem
because someone who doesn’t want to be policed will just spread traffic over a zillion addresses, and
there’s no way to detect whether those are separate flows or all coming from a single user.

NETWORKS

8

Instead of trying to infer the flows, you might just pick a uniformly distributed random number
and, when the packet with that number comes up, mark or drop it. So if, say, 90 percent of the
packets come from one source, you would have a 90 percent probability that the dropped packet is
from that source.
NW There’s also a cool little idea out of Case Western Reserve University for handling queue
management remotely. Basically, their observation is that if you are on the path that all the traffic
passes through—for example, the NAT (network address translation) that’s separate from the cable
modem—you can track delay increase. Once the delay increase gets above a threshold of, say, 100
milliseconds, you can start using the RED approach for queue management or whatever it is you
need to do to get the traffic to back off. The problem with this, however, is that it provides only an
80 percent solution for the telephony crowd.
VJ If I understand what is being proposed there, you’re putting in an appliance to measure delay, but
if you’re looking at aggregated traffic, you don’t know how it de-aggregates.
NW That’s partially why this proposal focused on the home gateway. Basically, there aren’t all that
many large flows going through your NAT box at any point in time.
VJ But if you’re on the gateway, you’ve already got the queue, so you don’t need any state at all. The
queue is its own state.
JG One of the reasons queue management is even being considered for home networks is because so
many of the broadband networks don’t provide any. I recently read a paper that indicated as much as
30 percent of residential broadband networks run without any queue management whatsoever. That
leaves it to the home routers to handle the problem. Then we’ve got the additional complication of
the huge dynamic range presented by wireless. Van has told me that classic RED cannot be used to
address that particular problem.
VC I’m trying to think about how we might start moving toward a solution. It seems there are
at least three different pieces to consider. First, there’s the party who’s suffering the effects of
bufferbloat in, say, a residential setting. Then there’s the service provider that, I believe, really wants
to provide a better quality of service for its customers. Finally, there are all those equipment and
software vendors that might be persuaded to address the problem if they thought it would make the
ISPs and end users happier.

The question is: under what conditions might we get all those parties to cooperate? Or is this
going to remain largely a research problem?
NW Well, there have been a couple of cases where the application vendors concluded they were
causing too much damage and therefore started making changes. BitTorrent is the classic example.
It is shifting to delay-based congestion control specifically to: (a) be friendlier to TCP because most
of the data carried by BitTorrent really is lower-priority stuff; and (b) mitigate the “you can’t run
BitTorrent and Warcraft at the same time” problem. So, there’s some hope.
JG Right. There are also a number of queue-management algorithms other than classic RED that
we’re ready to start experimenting with. Van is working with Kathie Nichols [founder and CEO of
Pollere Inc., specializing in network architecture and performance] on something they’re calling
RED Lite, and we hope to start playing around with that soon. There’s also a queue-management
algorithm called SFB (Stochastic Fair Blue) that’s been implemented in Linux and we’re now getting
ready to try it out.

A number of us are trying now to set up OpenWrt (a Linux-based program for embedded devices)

NETWORKS

9

so we can build, at least as a proof of principle, a home router that’s well behaved and might even
function reasonably well.
VJ There’s also a separate piece that’s important to understand. Because there is no static answer to
this problem, there’s no answer that’s right for all environments, and any answer needs to evolve
over time. People need some no-brainer, easy-to-use measurement tools that say, “Your home router’s
delay is getting really bad.”

For example, one group that’s massively affected by this bufferbloat problem is YouTube. It’s in
a position to observe the congestion at the upstream end of the residential links. It would be really
simple to add instrumentation to their servers to measure the buffering delay on each video sent out
and then associate that with the destination IP address. That could be viewed at the individual level
(via the player), the prefix level, or the network level to provide some understanding of where the
delays are occurring.
JG The only place where the problem really matters is where you hit that point of bandwidth
transition. Anywhere else, the excessive buffering might not matter at all, apart from being a waste
of memory. But out at the edge of the network, we’re certainly getting hurt pretty badly right now.
That applies to the operating systems, the home routers, the broadband gear you find in people’s
homes, and the broadband gear that’s installed at the ISP end. So, among those four places, we
certainly ought to focus on producing some simple tools that can help people identify where their
problems are coming from.
VJ I have four family members in my household. It used to be that none of us watched video over
the net, but now everybody watches video or plays games over the net, or tries to do both at the
same time. It only takes one person watching YouTube while somebody else is watching Netflix to
completely saturate the Internet-to-home link.

That’s not the fault of YouTube or Netflix or anybody in the household. It’s just the way people
are using the Internet now. This is a problem we need to fix so that people can continue using the
Internet the ways they’ve grown accustomed to.

n n
The bufferbloat problem is likely to worsen as the demand grows for Internet-intensive activities such as
streaming video and remote data backup and storage, with the online user experience bound to deteriorate as
a consequence. The problem is most visible at the edge of the network, but evidence of it can also be found in
the Internet core, in corporate networks, and in the boundaries between ISPs. Besides calling for simple tools
that people can use to find and measure bufferbloat, active queue management for all devices is also in order.
The best algorithm for the job remains to be determined, however.

VC A comment came up earlier about using carrier-grade NATs to track delay increase. It sounds to
me, though, that even if they were situated where congestion could be detected, there might still
be a problem. That is, if you’re downstream from the congestion and your equipment has too much
buffer in it, the problem is going to persist. Is that a correct observation?
VJ No, because you hit the problem wherever there’s a fast-to-slow transition, which is going to occur
wherever traffic moves from the high-bandwidth Internet to the subscriber link.
VC So a carrier-grade NAT isn’t necessarily going to help unless that transition is up ahead of you in
the stream?

NETWORKS

10

VJ Exactly right. There are some really complicated things you can do to figure that out, but that’s
really difficult and nowhere near 100 percent reliable. What it really comes down to is that you want
to solve the problem wherever the big queue is.
VC This might be a good time to raise the more general question of why a control system doesn’t
work well unless it happens to have just exactly the right information available to it—that is,
whatever information aligns best with that system’s core algorithm. The sense I’m getting from this
conversation is that it’s proving difficult to get all the information that would be helpful in figuring
out what the right buffer size ought to be at any moment.
VJ That’s true, and I was a major contributor to the misinformation. I helped put people on the
wrong track with RED, which attempts to extract some information from the average queue size, but
it turns out there’s nothing that can be learned from the average queue size.

There was some later work on algorithms such as BLUE from the University of Michigan and
a successor that’s coming from the Hamilton Institute in Ireland, both of which look at the time
you’ve had a queue above threshold, which is a much more reliable indicator than anything you can
obtain from looking at the queue size.

But there’s a problem. You need to have about 100 milliseconds of queue for your connection to
get started. You deliver a window’s worth of packets to the bottleneck, which temporarily creates
a queue, the queue drains into the wire, and everything runs smoothly with no queue. If you
didn’t have that queue, you would get pathetic throughput and massive packet loss, so this is good
queue. But when you dump a second’s worth of data into a 100-millisecond path and end up with
a second’s worth of queue, that sits there forever. That’s bad queue: it’s not doing you any good; it’s
just generating delay.

What’s needed is an algorithm that can tell the difference between good queue and bad queue.
That requires a dynamic analysis that turns out to be fairly easy. The time behavior of the queue
distinguishes between good and bad since the good queue goes away, but the bad queue doesn’t.
If you just track the minimum over time, everything below that minimum can be considered bad
queue, while everything above it qualifies as good queue.
VC It’s heartening to hear you say that you can apply fairly straightforward dynamic analysis
techniques to distinguish between good queue and bad queue at that point in the network where the
data-rate transition occurs. There might be hope for designing a more adaptable edge device, at least
for residential settings.
VJ I’m fairly optimistic about that.
VC Let us suppose for the sake of argument that the equipment makers come to recognize there is a
problem and even go so far as to indicate a willingness to cooperate, and that the ISPs, moreover, say
they’re prepared to acquire the appropriate equipment. Would it then be possible or appropriate to
incorporate in those devices a measurement capability to detect any subsequent problems, or at least
to provide some sense of how well the queue-management algorithms are doing once they’ve been
deployed?
VJ We definitely want to have a self-measurement capability, but it probably shouldn’t reside in the
devices. It’s the end users who suffer the pain of those problems and they need to be able to pin
down the cause. It’s pretty straightforward to give tools to end users. TCP’s normal round-trip time
measurements show the delay your traffic is experiencing. If that delay is excessive, you can use
Netalyzr or a tool such as Pathchar to determine where it’s occurring.

NETWORKS

11

JG Steve Bauer [of MIT] and I had a conversation with Doug Suttles at Ookla, which is the parent
company for Speedtest.net, regarding this very point. We all agreed we need end-user tools that
point out where in the path the bloated buffers are. Doug is very interested, so hopefully we’ll be
able to do something about that.

One other point I want to make is that while the worst of the problems appear to be out at the
edge, we know there are bufferbloat problems in other places as well, such as the boundaries between
various ISPs, where you sometimes find congestion. I also see problems wherever IPsec tunnels
appear to terminate, and I think many corporate networks might be running right now without any
queue management whatsoever. We’re going to find this becoming much more of a problem as more
and more of the machines online become capable of trivially saturating the corporate network links.

Some things are being done to provide relief over the very short term by allowing for dynamic
adjustments in the buffering for certain devices in response to latency or bandwidth criteria instead
of just giving people a static-sized buffer and leaving it at that.

The cable industry, for example, is making some changes along these lines even now to mitigate
the severity of the problem. Still, the proper solution that’s really called for is to have real queue
management everywhere.
VC I wonder whether it’s possible to persuade the equipment manufacturers that it’s in their best
interests to change the way buffers are used—specifically to allow more dynamics in the scaling of
the end-user buffer size.

What you’ve done so far is to illustrate the nature of the problem and the conditions under
which it occurs, and that ought to at least serve as an important starting point. This discussion
makes it pretty clear just how hard a problem this is. It’s also an important one to solve because the
experiences people have with the network are unlikely to end up being happy ones unless we find a
better solution than what we have right now.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

© 2011 ACM 1542-7730/11/1000 $10.00

mailto:feedback@acmqueue.com

