Some bits may be received in error due to noise. How do we detect this?

- Parity
- Checksums
- CRCs

Detection will let us fix the error, for example, by retransmission (later).
Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of the D bits
 – Sum is modulo 2 or XOR
Parity Bit (2)

• How well does parity work?
 – What is the distance of the code?
 – How many errors will it detect/correct?

• What about larger errors?
Checksums

• Idea: sum up data in N-bit words
 – Widely used in, e.g., TCP/IP/UDP

 1500 bytes 16 bits

• Stronger protection than parity
Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it’s the negative sum
- “The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ...” – RFC 791
Internet Checksum (2)

Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{array}{c}
0001 \\
f203 \\
f4f5 \\
f6f7 \\
\end{array}
\]
Internet Checksum (3)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{array}{c}
\text{0001} \\
\text{f203} \\
\text{f4f5} \\
\text{f6f7} \\
+(\text{0000}) \\
\hline
2\text{ddf}0 \\
\downarrow \\
\text{ddf}0 \\
+ 2 \\
\hline
\text{ddf}2 \\
\downarrow \\
220d
\end{array}
\]
Internet Checksum (4)

Receiving:

1. Arrange data in 16-bit words
2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0
Internet Checksum (5)

Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0
Internet Checksum (6)

• How well does the checksum work?
 – What is the distance of the code?
 – How many errors will it detect/correct?

• What about larger errors?
Cyclic Redundancy Check (CRC)

• Even stronger protection
 – Given n data bits, generate k check bits such that the n+k bits are evenly divisible by a generator C

• Example with numbers:
 – n = 302, k = one digit, C = 3
CRCs (2)

• The catch:
 – It’s based on mathematics of finite fields, in which “numbers” represent polynomials
 – e.g., 10011010 is $x^7 + x^4 + x^3 + x^1$

• What this means:
 – We work with binary values and operate using modulo 2 arithmetic
CRCs (3)

• Send Procedure:
 1. Extend the n data bits with k zeros
 2. Divide by the generator value C
 3. Keep remainder, ignore quotient
 4. Adjust k check bits by remainder

• Receive Procedure:
 1. Divide and check for zero remainder
<table>
<thead>
<tr>
<th>Data bits:</th>
<th>1 0 0 1 1</th>
<th>1 1 0 1 0 1 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101011111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check bits:</td>
<td>C(x) = x^4 + x^1 + 1</td>
<td></td>
</tr>
<tr>
<td>C = 10011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k = 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CRCs (5)

Transmitted frame: 1 1 0 1 0 1 1 1 1 1

Frame with four zeros appended minus remainder:

Quotient (thrown away):

Frame with four zeros appended:

Remainder:
CRCs (6)

• Protection depend on generator
 – Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
 – HD=4, detects up to triple bit errors
 – Also odd number of errors
 – And bursts of up to k bits in error
 – Not vulnerable to systematic errors like checksums
Error Detection in Practice

• CRCs are widely used on links
 – Ethernet, 802.11, ADSL, Cable …

• Checksum used in Internet
 – IP, TCP, UDP … but it is weak

• Parity
 – Is little used
Topic

- Some bits may be received in error due to noise. How do we fix them?
 - Hamming code
 - Other codes

- And why should we use detection when we can use correction?
Why Error Correction is Hard

• If we had reliable check bits we could use them to narrow down the position of the error
 – Then correction would be easy
• But error could be in the check bits as well as the data bits!
 – Data might even be correct
Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance of at least 3
 – Need ≥3 bit errors to change one valid codeword into another
 – Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 Works for d errors if HD ≥ 2d + 1
Intuition (2)

- **Visualization of code:**

 ![Diagram showing visual intuition of code with valid and error codewords](chart)

 - Valid codeword
 - Error codeword
Intuition (3)

• Visualization of code:

Single bit error from A

Three bit errors to get to B

Valid codeword

Error codeword

A

B
Hamming Code

- Gives a method for constructing a code with a distance of 3
- Uses $n = 2^k - k - 1$, e.g., $n=4$, $k=3$
 - Put check bits in positions p that are powers of 2, starting with position 1
 - Check bit in position p is parity of positions with a p term in their values
- Plus an easy way to correct [soon]
Hamming Code (2)

• Example: data=0101, 3 check bits
 – 7 bit code, check bit positions 1, 2, 4
 – Check 1 covers positions 1, 3, 5, 7
 – Check 2 covers positions 2, 3, 6, 7
 – Check 4 covers positions 4, 5, 6, 7

\[
\begin{align*}
P_1 &= 0 + 1 + 1 = 0 \\
P_2 &= 0 + 0 + 1 = 1 \\
P_3 &= 1 + 0 + 1 = 0
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>O</td>
<td>I</td>
<td>O</td>
<td>O</td>
<td>I</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>P2</td>
<td>O</td>
<td>1</td>
<td>O</td>
<td>O</td>
<td>1</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Hamming Code (3)

• Example: data=0101, 3 check bits
 – 7 bit code, check bit positions 1, 2, 4
 – Check 1 covers positions 1, 3, 5, 7
 – Check 2 covers positions 2, 3, 6, 7
 – Check 4 covers positions 4, 5, 6, 7

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\[
p_1 = 0 + 1 + 1 = 0, \quad p_2 = 0 + 0 + 1 = 1, \quad p_4 = 1 + 0 + 1 = 0
\]
Hamming Code (4)

To decode:

- Recompute check bits (with parity sum including the check bit)
- Arrange as a binary number
- Value (syndrome) tells error position
- Value of zero means no error
- Otherwise, flip bit to correct
Hamming Code (5)

• Example, continued

\[\rightarrow 0 1 0 0 1 0 1 \]

\[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
p_1 &=& 0 &+& 0 &+& 1 &=& 0 \\
p_2 &=& 1 &+& 0 &+& 1 &=& 0 \\
p_4 &=& 0 &+& 0 &+& 0 &=& 0 \\
\end{array} \]

Syndrome = \(\ell \ell \ell \) (error)

Data = 0 0 1
Hamming Code (6)

• Example, continued

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\end{array} \]

\[p_1 = 0 + 0 + 1 + 1 = 0, \quad p_2 = 1 + 0 + 0 + 1 = 0, \]
\[p_4 = 0 + 1 + 0 + 1 = 0 \]

Syndrome = 000, no error
Data = 0 1 0 1
Hamming Code (7)

- Example, continued

\[
\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & \textcircled{1} & 1 \\
\end{array}
\]

- Syndrome = \[\begin{array}{c} 1 \end{array}\] \[\rightarrow 6\]
- Data = \[0 1 0 \]

\[
p_1 = 0 + 0 + 0 = 0 \quad p_2 = 1 + 0 + 1 + 1 = 1 \\
p_4 = 0 + 0 + 1 + 1 = 1
\]
Hamming Code (8)

• Example, continued

\[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \]

\[p_1 = 0+0+1+1 = 0, \quad p_2 = 1+0+1+1 = 1, \]
\[p_4 = 0+1+1+1 = 1 \]

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)
Other Error Correction Codes

• Codes used in practice are much more involved than Hamming

• Convolutional codes (§3.2.3)
 – Take a stream of data and output a mix of the recent input bits
 – Makes each output bit less fragile
 – Decode using Viterbi algorithm (which can use bit confidence values)
Other Codes (2) – LDPC

• Low Density Parity Check (§3.2.3)
 – LDPC based on sparse matrices
 – Decoded iteratively using a belief propagation algorithm
 – State of the art today

• Invented by Robert Gallager in 1963 as part of his PhD thesis
 – Promptly forgotten until 1996 ...
Detection vs. Correction

• Which is better will depend on the pattern of errors. For example:
 – 1000 bit messages with a **bit error rate** (BER) of 1 in 10000

• Which has less overhead?
Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a bit error rate (BER) of 1 in 10000

- Which has less overhead?
 - It still depends! We need to know more about the errors
Detection vs. Correction (2)

1. Assume bit errors are random
 - Messages have 0 or maybe 1 error

 • Error correction:
 - Need \(\sim 10 \) check bits per message
 - Overhead: \(10 \)

 • Error detection:
 - Need \(\sim 1 \) check bits per message plus 1000 bit retransmission 1/10 of the time
 - Overhead: \(1 + \frac{1000}{10} \sim 101 \text{ bits} \)
Detection vs. Correction (3)

2. Assume errors come in **bursts of 100**
 - Only 1 or 2 messages in 1000 have errors

• **Error correction:**
 - Need $>>100$ check bits per message
 - Overhead: >100

• **Error detection:**
 - Need $32?\times\frac{1000}{1000} = 34$ bits
 - Overhead: $32 + \frac{1000}{1000} = 34$ bits
Detection vs. Correction (4)

• Error correction:
 – Needed when errors are expected
 – Or when no time for retransmission

• Error detection:
 – More efficient when errors are not expected
 – And when errors are large when they do occur
Error Correction in Practice

- Heavily used in physical layer
 - LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE, power-line, ...
 - Convolutional codes widely used in practice

- Error detection (w/ retransmission) is used in the link layer and above for residual errors

- Correction also used in the application layer
 - Called Forward Error Correction (FEC)
 - Normally with an erasure error model
 - E.g., Reed-Solomon (CDs, DVDs, etc.)