
Section ?: More Wireshark, advanced SSH
CSE 461 Computer Networks

Wireshark

(Not that) advanced SSH

ssh user@server -p port

SSH Keys

SSH Encryption

● SSH uses symmetrical encryption
● The session key is negotiated securely under asymmetrical encryption, upon

each connection
● SSH “keys” (or passwords) are used for key negotiation
● We will learn more about cryptography in lecture

○ Take CSE 484 (Security) and CSE 490C (Cryptography) if you are interested

● We will focus on the more practical side of SSH

Why keys over passwords?

● More secure than passwords
○ Keys have completely (?) random bits
○ Passwords are vulnerable to dictionary attacks

● Easier to manage
○ Keys are kept locally and supplied automatically when you need them
○ Remembering passwords can be a pain
○ Keys can be revoked easily

Generating an SSH key pair

● To generate a key pair (RSA, by default): ssh-keygen [-t type]
○ We recommend using Ed25519 over RSA: ssh-keygen -t ed25519
○ Ed25519 is faster and more secure, but a lot of people are still using RSA
○ You probably have these already if you have used the CSE Gitlab

● By default, generates keys under ~/.ssh/
○ Public key: id_{rsa|ed25519|...}.pub
○ Private key: id_{rsa|ed25519|...}
○ Keep your private keys private

● Optional passphrase to protect your private keys
○ Additional passphrase-based encryption, so adversaries can’t get

your private keys even if your machine is compromised

Authenticating with your SSH key

● Before you can use your keys, you need to install them on the server
○ I.e. Add your public key to ~/.ssh/authorized_keys on the server
○ You can edit the file manually by logging in with your password
○ Or use ssh-copy-id [-i path/to/private/key] someserver (on macOS and Linux)

● Use -i path/to/private/key to specify a key when SSHing
○ Your id_{rsa|ed25519|dsa|...} key under ~/.ssh/ is used by default
○ Or use the IdentityFile option in SSH config

● When you log in, the server looks up your public key in authorized_keys and
lets you in if there is a match

Server Verification (Known hosts)

● The client stores the key of every server it knows under ~/.ssh/known_hosts
● SSH stops you from connecting to a server if the server’s key doesn’t match

the one in known_hosts
○ This often happens because someone is impersonating the server you know
○ If you trust the new server identity, simply delete its key from known_hosts

ssh-agent

● Like a password manager for SSH keys
● Makes using passphrases easier
● ssh-add [path/to/private/key] to add key to ssh-agent

○ By default adds your id_{rsa|ed25519|dsa|...}

● The passphrase is remembered for the entire session

SSH Config File

SSH Config File

● Per user config at ~/.ssh/config (create if doesn’t exist)
● Allows you to define hosts aliases with configurations

Host attu attu? recycle bicycle tricycle
 Hostname %h.cs.washington.edu
 Port 22
 User kyleyan
 IdentityFile ~/.ssh/id_ed25519

Simple host configs

With the config above, I can just run ssh attu to connect to attu.

Equivalent to
ssh kyleyan@attu.cs.washington.edu -p 22 -i ~/.ssh/id_ed25519

Host attu
 Hostname attu.cs.washington.edu
 Port 22
 User kyleyan
 IdentityFile ~/.ssh/id_ed25519

Host mininet
 Hostname localhost
 Port 2222
 User mininet

A slightly more complicated config

This config defines many hosts at the same time, including a wildcard (attu?).
Note that %h will be replaced by the actual value of “Host.”

With this config, I can do ssh attu8 to connect to attu8.cs.washington.edu.

Host attu attu? recycle bicycle tricycle
 Hostname %h.cs.washington.edu
 Port 22
 User kyleyan
 IdentityFile ~/.ssh/id_ed25519

SSH Port Forwarding/Tunneling

Local Forwarding (-L)

● Opens a local port that forwards to a remote port
● Syntax: -L port:host:hostport
● Use case

○ I some service running on the server, say Jupyter Lab, but bound to localhost only
○ ssh -L 8888:localhost:8888 server

● VSCode’s Remote SSH extension provides this feature
○ Ctrl+Shift+P and search for “Forward a Port”

Remote Forwarding (-R)

● Opens a port on remote that forwards to a local port
● Syntax: -R port:host:hostport
● Requires “GatewayPorts yes” to be enabled on SSH server
● Use case

○ I use remote forwarding to SSH to my desktop from anywhere
○ From my desktop: ssh -R 2222:localhost:22 publicserver.com

Dynamic Forwarding (-D)

● Uses SSH as a SOCKS proxy
● Syntax: -D port
● Use case

○ Use a proxy server to visit IPv6-only websites or access internal hosts
○ ssh -D 1080 attu
○ You probably have done this if you took 484

SSH Jump Host Proxy

Jump Host Proxy (-J)

● Use a jump host to connect to the final destination
● Syntax: -J jumphost
● Use case

○ You want to connect to a host behind a LAN externally, but only have SSH access to another
server in that network

○ ssh -J attu1 attu2

X11 Forwarding

X11 Forwarding (-X)

● Lets you run GUI apps over SSH
● Syntax: -X
● Needs “X11Forwarding yes” enabled on server
● You might need to install an “X server” on the client if you are on Windows or

macOS
○ XQuartz for macOS (and add XAuthLocation /usr/X11/bin/xauth to your SSH config)
○ Xming or vcxsrv for Windows

● ssh -X attu

You can add these forwarding / jump
proxy options in SSH config, too!
Use Host * to specify options for all hosts!

Other useful SSH tricks

● VS Code Remote SSH
○ A lot of you have been using it
○ Super useful for debugging code on remote machine

● tmux
○ Keep sessions running even if you disconnect
○ Split the terminal into smaller panels

● X11 Forwarding
○ Run GUI applications over SSH
○ ssh -X someserver

● See man ssh or tldr ssh to learn more about advanced SSH features!

