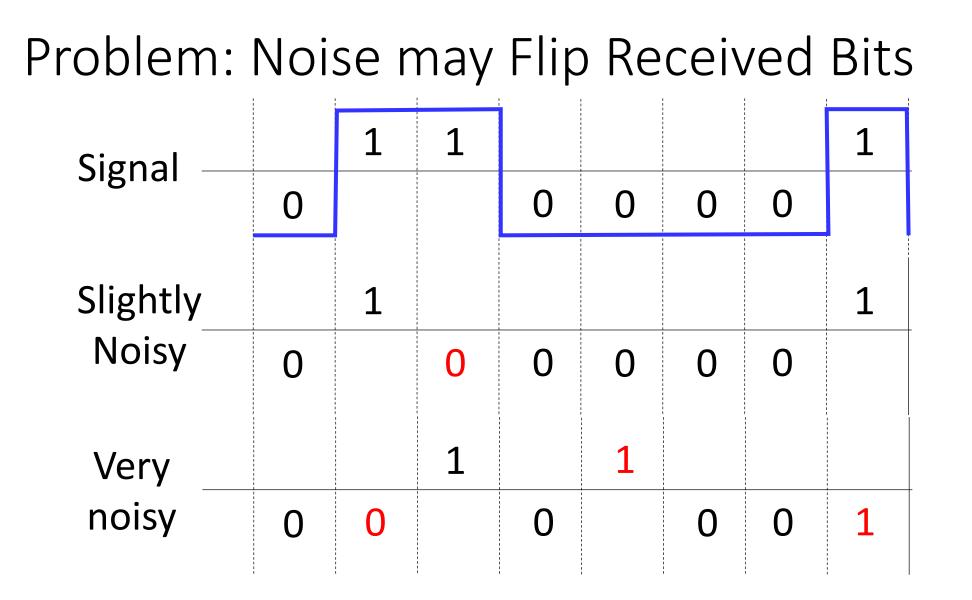
Link Layer: Error detection and correction

Problem: Noise may Flip Received Bits

- Link layers provides some protection
 - Detect errors with codes
 - Correct errors with codes
 - Retransmit lost frames Later
- Reliability concern cuts across the layers
 E.g, TCP in the transport layer, DNS in the app layer



Ideas?

Approach – Add Redundancy

- Error detection codes: Add <u>check bits</u> to the message bits to let some errors be detected
- Error correction codes: Add more <u>check bits</u> to let some errors be corrected
- Key issue: Structure the code such that
 - Need few check bits to detect/correct many errors
 - Modest computation

Motivating Example

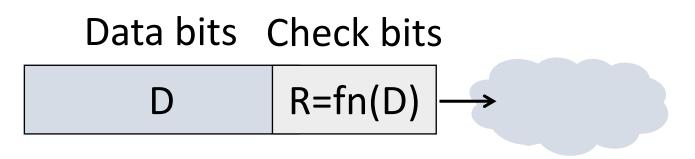
- A simple code to handle errors:
 - Send two copies! Error detected if different.
- How good is this code?
 - How many errors can it detect/correct?
 - How many errors will make it fail?

Want to Handle More Errors w/ Fewer Bits

- We'll look at better codes (applied mathematics)
 - But, they can't handle all errors
 - And they focus on accidental (random) errors

Using Error Codes

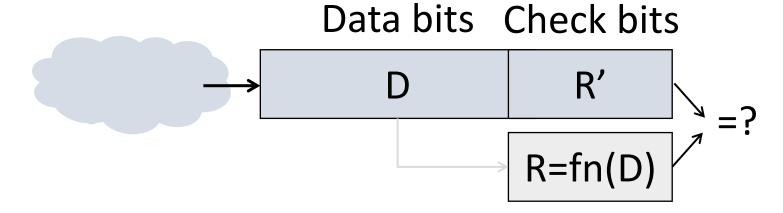
• Codeword consists of D data plus R check bits (=systematic block code)



- Sender:
 - Compute R check bits based on the D data bits; send the codeword of D+R bits

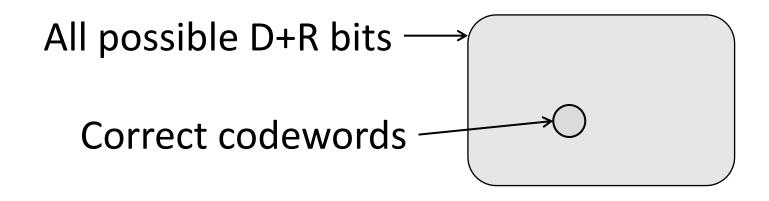
Using Error Codes (2)

- Receiver:
 - Receive D+R bits with unknown errors
 - Recompute R check bits based on the D data bits
 - Error detected if R doesn't match R'



Intuition for Error Codes

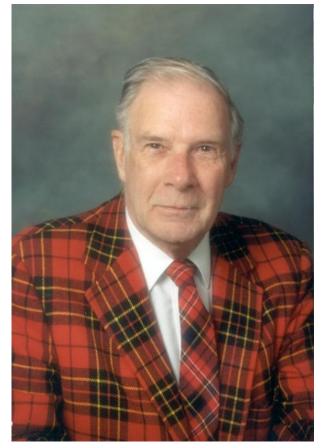
• For D data bits, R check bits:



Randomly chosen D+R bits is unlikely to be correct
Low, controllable overhead

R.W. Hamming (1915-1998)

- Much early work on codes:
 - "Error Detecting and Error Correcting Codes", BSTJ, 1950
- See also:
 - "You and Your Research", 1986



Source: IEEE GHN, © 2009 IEEE

Hamming Distance

• Distance is the number of bit flips needed to change D_1 to D_2

 <u>Hamming distance</u> of a coding is the minimum error distance between any pair of codewords (bit-strings) that cannot be detected

Hamming Distance (2)

- Error detection:
 - For a coding of distance d+1, up to d errors will always be detected
- Error correction:
 - For a coding of distance 2d+1, up to d errors can always be corrected by mapping to the closest valid codeword

Simple Error Detection – Parity Bit

Take D data bits, add 1 check bit
Check bit could be sum modulo 2 or XOR

Parity Bit (2)

- How well does parity work?
 - What is the distance of the code?
 - How many errors will it detect/correct?
- What about larger errors?

Idea: sum up data in N-bit words Widely used in, e.g., TCP/IP/UDP

1500 bytes	16 bits
------------	---------

Stronger protection than parity

Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it's the negative sum
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." RFC 791

Internet Checksum (2)

Sending:

- 1. Arrange data in 16-bit words
- 2.Put zero in checksum position, add
- 3.Add any carryover back to get 16 bits
- 4.Negate (complement) to get sum

0001 f204 f4f5 f6f7

Internet Checksum (3)

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 f204 f4f5f6f7 +(0000)2ddf1 ddf1 2 ddf3 220c

Internet Checksum (4)

Receiving:

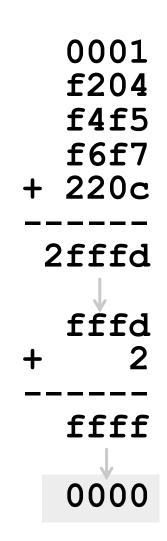
- 1. Arrange data in 16-bit words
- 2. Checksum will be non-zero, add
- 3. Add any carryover back to get 16 bits
- 4. Negate the result and check it is 0



Internet Checksum (5)

Receiving:

- 1. Arrange data in 16-bit words
- 2. Checksum will be non-zero, add
- 3. Add any carryover back to get 16 bits
- 4. Negate the result and check it is 0



Internet Checksum (6)

- How well does the checksum work?
 - What is the distance of the code?
 - How many errors will it detect/correct?

Why Error Correction is Hard

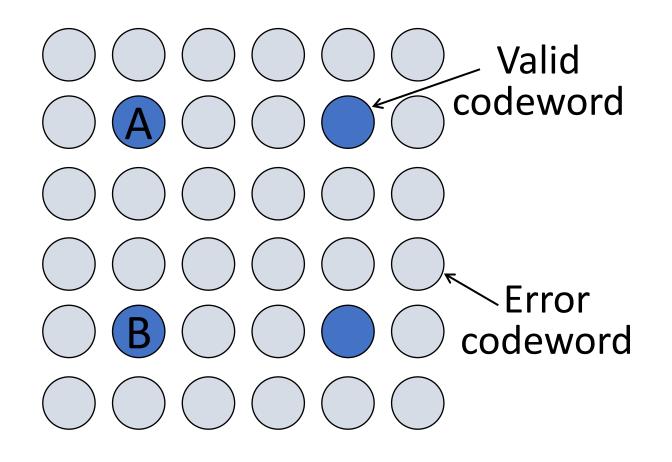
- If we had reliable check bits we could use them to narrow down the position of the error
 - Then correction would be easy
- But error could be in the check bits as well as the data bits!
 - Data might even be correct

Intuition for Error Correcting Code

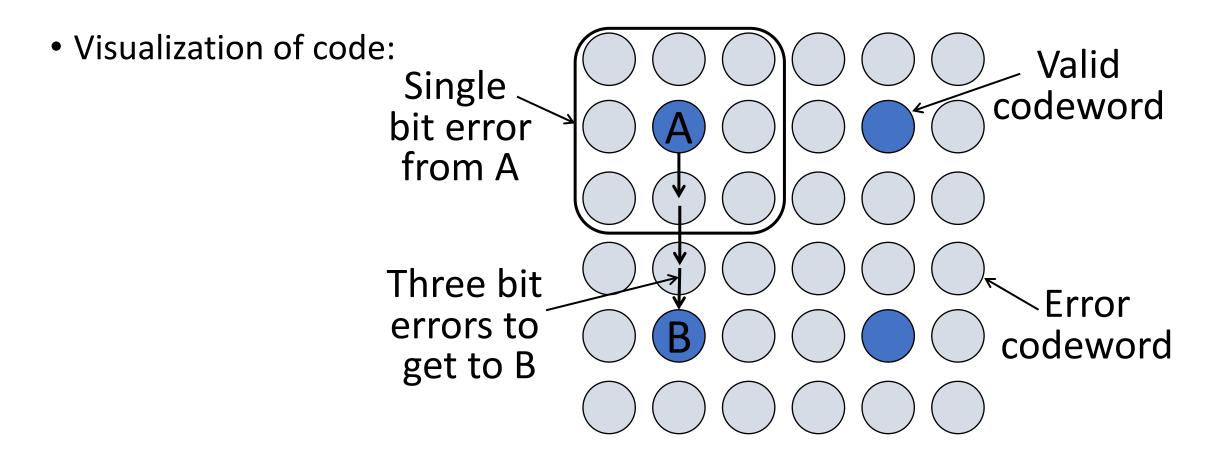
- Suppose we construct a code with a Hamming distance of at least 3
 - Need ≥3 bit errors to change one valid codeword into another
 - Single bit errors will be closest to a unique valid codeword
- If we assume errors are only 1 bit, we can correct mapping an error to the closest valid codeword
 - Works for d errors if $HD \ge 2d + 1$

Intuition (2)

• Visualization of code:



Intuition (3)



Hamming Code

- Gives a method for constructing a code with a distance of 3
 - Uses $n = 2^{k} k 1$, e.g., n=4, k=3
 - Put check bits in positions p that are powers of 2, starting with position 1
 - N-th check bit is parity of bit positions with n-th LSBit is same as p's
- Plus an easy way to correct [soon]

Hamming Code (2)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
 - Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
 - Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)

 $p_1 = 0 + 1 + 1 = 0$, $p_2 = 0 + 0 + 1 = 1$, $p_4 = 1 + 0 + 1 = 0$

Cheat sheet

1:0001

2:0010

3:0011

4:0100

5:0101

6:0110

7:0111

Hamming Code (3)

- To decode:
 - Recompute check bits (with parity sum including the check bit)
 - Arrange as a binary number
 - Value (syndrome) tells error position
 - Value of zero means no error
 - Otherwise, flip bit to correct

Hamming Code (5)

• Example, continued $\xrightarrow{} \underline{0} \ \underline{1} \ 0 \ \underline{0} \ 1 \ 0 \ 1$ $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

Syndrome = Data =

Hamming Code (6)

• Example, continued $\longrightarrow \underline{0} \ \underline{1} \ 0 \ \underline{0} \ 1 \ 0 \ 1$ $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

```
p_1 = 0 + 0 + 1 + 1 = 0, p_2 = 1 + 0 + 0 + 1 = 0,
p_4 = 0 + 1 + 0 + 1 = 0
```

Syndrome = 000, no error Data = 0 1 0 1 Hamming Code (7)

• Example, continued $\xrightarrow{} \underbrace{\begin{array}{c}0}{1} & \underbrace{1} & 0 & \underbrace{0} & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$

Syndrome = Data =

Hamming Code (8)

• Example, continued $\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{1}_{6} \underbrace{1}_{7} \underbrace{1$

```
p_1 = 0 + 0 + 1 + 1 = 0, p_2 = 1 + 0 + 1 + 1 = 1,
p_4 = 0 + 1 + 1 + 1 = 1
```

Syndrome = 1 1 0, flip position 6 Data = 0 1 0 1 (correct after flip!)

Hamming Code (3)

- Example: bad message 0100111
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

 $p_1 = 0 + 0 + 1 + 1 = 0$, $p_2 = 1 + 0 + 1 + 1 = 1$, $p_4 = 0 + 1 + 1 + 1 = 1$

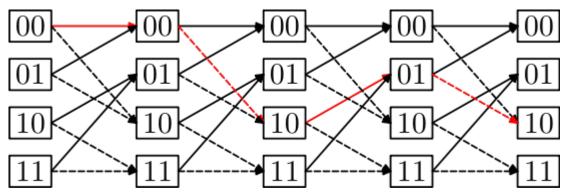
Hamming Code (3)

- Example: bad message 0100111
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6 7

 $p_1 = 0 + 0 + 1 + 1 = 0$, $p_2 = 1 + 0 + 1 + 1 = 1$, $p_4 = 0 + 1 + 1 + 1 = 1$

Other Error Correction Codes

- Real codes are more involved than Hamming
- E.g., Convolutional codes (§3.2.3)
 - Take a stream of data and output a mix of the input bits
 - Makes each output bit less fragile
 - Decode using Viterbi algorithm (uses bit confidence values)



Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u> (BER) of 1 in 10000
- Which has less overhead?

Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u> (BER) of 1 in 10000
- Which has less overhead?
 - It still depends! We need to know more about the errors

Detection vs. Correction (2)

Assume bit errors are random

• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:

- Need ~10 check bits per message
- Overhead:
 - 10 bits per message

Error detection:

- Need ~1 check bits per message plus 1000 bit retransmission
- Overhead:
 - 101 bits per message

Detection vs. Correction (3)

Assume errors come in bursts of 100

• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:

- Need >>100 check bits per message
- Overhead:
 - >> 100 bpm

Error detection:

- Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
- Overhead:
 - 34 bits per message

Detection vs. Correction (4)

• Error correction:

- Needed when errors are expected
- Or when no time for retransmission
- Error detection:
 - More efficient when errors are not expected
 - And when errors are large when they do occur

Error Correction in Practice

- Heavily used in physical layer
 - Used for demanding links like 802.11, DVB, WiMAX, power-line, ...
 - Convolutional codes widely used in practice
- Error detection (w/ retransmission) is used in the link layer and above for residual errors
- Correction also used in the application layer
 - Called Forward Error Correction (FEC)
 - Normally with an erasure error model
 - E.g., Reed-Solomon (CDs, DVDs, etc.)

Error Correction in Practice (2)

- Everywhere! It is a key issue
 - Different layers contribute differently

