Recap: Finding best paths

No one notion of "best"
Finesse the issue using link costs
Goal becomes finding least cost or shortest path
Distance vector is one way to do it

- Exchange a vector of known destinations and cost
- Suffers count to infinity—heuristics help but are not foolproof

Link-State Routing

Link-State Routing

- Second broad class of routing algorithms
 - More computation than DV but better dynamics
- Widely used in practice
 - Used in Internet/ARPANET from 1979
 - Modern networks use OSPF (L3) and IS-IS (L2)

Link-State Setting

Same distributed setting as for distance vector:

- 1. Nodes know only the cost to their neighbors; not topology
- 2. Nodes can talk only to their neighbors using messages
- 3. All nodes run the same algorithm concurrently
- 4. Nodes/links may fail, messages may be lost

Link-State Algorithm

Proceeds in two phases:

- 1. Nodes <u>flood</u> topology with link state packets
 - Each node learns full topology
- 2. Each node computes its own forwarding table
 - By running Dijkstra (or equivalent)

Part 1: Flooding

Flooding

- Rule used at each node:
 - Sends an incoming message on to all other neighbors
 - Remember the message so that it is only flood once

Flooding (2)

AE

• Consider a flood from A; first reaches B via AB, E via

Flooding (3)

EF

• Next B floods BC, BE, BF, BG, and E floods EB, EC, ED,

E and B send to each other G D $H \bigcirc$

Flooding (4)

• C floods CD, CH; D floods DC; F floods FG; G floods GF

Flooding (5)

H has no-one to flood ... and we're done

Flooding Details

- Remember message (to stop flood) using source and sequence number
 - So next message (with higher sequence) will go through
- To make flooding reliable, use ARQ
 - So receiver acknowledges, and sender resends if needed

Problem?

Flooding Problem

F receives the same message multiple times

Part 2: Dijkstra's Algorithm

Edsger W. Dijkstra (1930-2002)

- Famous computer scientist
 - Programming languages
 - Distributed algorithms
 - Program verification
- Dijkstra's algorithm, 1969
 - Single-source shortest paths, given network with non-negative link costs

By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons

Dijkstra's Algorithm

Algorithm:

- Mark all nodes tentative, set distances from source to 0 (zero) for source, and ∞ (infinity) for all other nodes
- While tentative nodes remain:
 - Extract N, a node with lowest distance
 - Add link to N to the shortest path tree
 - Relax the distances of neighbors of N by lowering any better distance estimates

Dijkstra's Algorithm (2)

Dijkstra's Algorithm (3)

 Relax around A $G \subset$ $H \bigcirc$

Dijkstra's Algorithm (4)

Distance fell! • Relax around B Ε 3 G 10 00 4 D $H \bigcirc$ 6 3

Dijkstra's Algorithm (5)

Distance fell Relax around C 'again! Ε 3 G 10 3 8 4 D $H \bigcirc$ 3

Dijkstra's Algorithm (6)

Dijkstra's Algorithm (7)

Relax has no effect Relax around F (say) 3 G 10 8 4 D $H \bigcirc$ 3

Dijkstra's Algorithm (8)

• Relax around E 3 G 10 8 4 D $H \bigcirc$ 3

Dijkstra's Algorithm (9)

• Relax around D 3 G 10 4 $H \bigcirc$ 3

Dijkstra's Algorithm (10)

• Finally, H ... done 3 G 10 4 D H **●**← 9 3

Dijkstra Comments

- Finds shortest paths in order of increasing distance from source
 - Leverages optimality property
- Runtime depends on cost of extracting min-cost node
 - Superlinear in network size (grows fast)
 - Using Fibonacci Heaps the complexity is O(|E|+|V|log| V|)
- Gives complete source/sink tree
 - More than needed for forwarding!
 - But requires complete topology

Bringing it all together...

Phase 1: Topology Dissemination

Each node floods <u>link state packet</u>
 (LSP) that describes their portion of the topology

Node E's LSP flooded to A, B, C, D, and F

Seq. #	
Α	10
В	4
С	1
D	2
F	2

Phase 2: Route Computation

- Each node has full topology
 - By combining all LSPs
- Each node simply runs Dijkstra
 - Replicated computation, but finds required routes directly
 - Compile forwarding table from sink/source tree
 - That's it folks!

Forwarding Table

Source Tree for E (from Dijkstra)

E's Forwarding Table

То	Next	
Α	С	
В	С	
С	С	
D	D	
Е		
F	F	
G	F	
Н	С	

Handling Changes

- On change, flood updated LSPs, re-compute routes
 - E.g., nodes adjacent to failed link or node initiate

B's LSP

Seq. #		
Α	4	
С	2	
E	4	
F	3	
G	00	

F's LSP

Seq. #	
В	3
E	2
G	∞

Handling Changes (2)

- Link failure
 - Both nodes notice, send updated LSPs
 - Link is removed from topology
- Node failure
 - All neighbors notice a link has failed
 - Failed node can't update its own LSP
 - But it is OK: all links to node removed

Handling Changes (3)

- Addition of a link or node
 - Add LSP of new node to topology
 - Old LSPs are updated with new link
- Additions are the easy case ...

Link-State Complications

- Things that can go wrong:
 - Seq. number reaches max, or is corrupted
 - Node crashes and loses seq. number
 - Network partitions then heals
- Strategy:
 - Include age on LSPs and forget old information that is not refreshed
- Much of the complexity is due to handling corner cases

DV/LS Comparison

Goal	Distance Vector	Link-State
Correctness	Distributed Bellman-Ford	Replicated Dijkstra
Efficient paths	Approx. with shortest paths	Approx. with shortest paths
Fair paths	Approx. with shortest paths	Approx. with shortest paths
Fast convergence	Slow – many exchanges	Fast – flood and compute
Scalability	Excellent – storage/compute	Moderate – storage/compute

IS-IS and OSPF Protocols

- Widely used in large enterprise and ISP networks
 - IS-IS = Intermediate System to Intermediate System
 - OSPF = Open Shortest Path First
- Link-state protocol with many added features
 - E.g., "Areas" for scalability

Equal-Cost Multi-Path Routing

Multipath Routing

- Allow multiple routing paths from node to destination be used at once
 - Topology has them for redundancy
 - Using them can improve performance
- Questions:
 - How do we find multiple paths?
 - How do we send traffic along them?

Equal-Cost Multipath Routes

- One form of multipath routing
 - Extends shortest path model by keeping set if there are ties
- Consider A \rightarrow E
 - ABE = 4 + 4 = 8
 - ABCE = 4 + 2 + 2 = 8
 - ABCDE = 4 + 2 + 1 + 1 = 8
 - Use them all!

Source "Trees"

- With ECMP, source/sink "tree" is a directed acyclic graph (DAG)
 - Each node has set of next hops
 - Still a compact representation

Source "Trees" (2)

- Find the source "tree" for E
 - Procedure is Dijkstra, simply remember set of next hops
 - Compile forwarding table similarly, may have set of next hops
- Straightforward to extend DV too
 - Just remember set of neighbors

Source "Trees" (3)

Source Tree for E

E's Forwarding Table

Node	Next hops	
Α	B, C, D	
В	B, C, D	
С	C, D	
D	D	
E		
F	F	
G	F	
Н	C, D	

Forwarding with ECMP

- Could randomly pick a next hop for each packet based on destination
 - Balances load, but adds jitter
- Try sending packets from a flow on the same path
 - Flow identified using 5-tuple
 - Map flow identifier to single next hop
 - No jitter within flow, but less balanced

Forwarding with ECMP (2)

Multipath routes from F/E to C/H

E's Forwarding Choices

Flow	Possible next hops	Example choice
$F \rightarrow H$	C, D	D
F → C	C, D	D
$E \rightarrow H$	C, D	С
E → C	C, D	С

Use both paths to get to one destination