Recap from last class

Network layer provides addressing, internetworking, and routing and forwarding

IP, the network layer for the Internet, provides a datagram abstraction

IPv4 addresses are written as 128.23.45.32, allocated as prefixes

DHCP: Hosts get their addresses and other essential information ARP: Convert IP addresses to link layer addresses

Fragmentation

Fragmentation

- Problem: How do we connect networks with different maximum packet sizes?
 - Need to split up packets, or discover the largest size to use

Packet Size Problem

- Different networks have different max packet sizes
 - Or MTU (Maximum Transmission Unit)
 - E.g., Ethernet 1.5K, WiFi 2.3K
- Prefer large packets for efficiency
 - But what size is too large?
 - Difficult as node doesn't know complete network path

Packet Size Solutions

- Fragmentation (now)
 - Split up large packets in if they are too big to send
 - Classic method, dated
- Discovery (next)
 - Find the largest packet that fits on the network path
 - IP uses today instead of fragmentation

IPv4 Fragmentation

- Routers fragment packets too large to forward
- Receiving host reassembles to reduce load on routers

IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

	◄ 32 Bits							
L								
	Version	IHL	Differentiated Services		Total length			
	dentification			D M F F F Fragment offset				
	Time	to live	Protocol	Header checksum				
	Source address							
	Destination address							
5	C Options (0 or more words)							
	Payload (e.g., TCP segment)							

IPv4 Fragmentation Procedure

- Routers split a packet that is too large:
 - Typically break into large pieces
 - Copy IP header to pieces
 - Adjust length on pieces
 - Set offset to indicate position
 - Set MF (More Fragments) on all pieces except last
- Receiving hosts reassembles the pieces:
 - Identification field links pieces together, MF tells receiver when complete

IPv4 Fragmentation (2)

IPv4 Fragmentation (3)

IPv4 Fragmentation (4)

- It works!
 - Allows repeated fragmentation
- But fragmentation is undesirable
 - More work for routers, hosts
 - Tends to magnify loss rate
 - Security vulnerabilities too

Path MTU Discovery

- Discover the MTU that will fit
 - So we can avoid fragmentation
 - The method in use today
- Host tests path with large packet
 - Routers provide feedback if too large; they tell host what size would have fit

Path MTU Discovery (2)

Path MTU Discovery (3)

Path MTU Discovery (4)

- Process may seem involved
 - But usually quick to find right size
 - MTUs smaller on edges of network
- Path MTU depends on the path and can change
 - Search is ongoing
- Implemented with ICMP (next)
 - Set DF (Don't Fragment) bit in IP header to get feedback

Internet Control Message Protocol (ICMP)

Торіс

- Problem: What happens when something goes wrong during forwarding?
 - Need to be able to find the problem

Internet Control Message Protocol

- ICMP is a companion protocol to IP
 - They are implemented together
 - Sits on top of IP (IP Protocol=1)
- Provides error report and testing
 - Error is at router while forwarding
 - Also testing that hosts can use

ICMP Errors

- When router encounters an error while forwarding:
 - It sends an ICMP error report back to the IP source
 - It discards the problematic packet; host needs to rectify

ICMP Message Format (2)

- Each ICMP message has a Type, Code, and Checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

Portion of offending packet, starting with its IP header

Example ICMP Messages

Name	Type / Code	Usage
Dest. Unreachable (Net or Host)	3 / 0 or 1	Lack of connectivity
Dest. Unreachable (Fragment)	3 / 4	Path MTU Discovery
Time Exceeded (Transit)	11 / 0	Traceroute
Echo Request or Reply	8 or 0 / 0	Ping

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply

Traceroute

- IP header contains TTL (Time to live) field
 - Decremented every router hop, with ICMP error at zero
 - Protects against forwarding loops

Version	IHL	Differentiated Services		Total length		
	dentif	ication	D M F F Fragment offset			
Time	to live	Protocol		Header checksum		
Source address						
	Destination address					
Options (0 or more words)						

Traceroute (2)

- Traceroute repurposes TTL and ICMP functionality
 - Sends probe packets increasing TTL starting from 1
 - ICMP errors identify routers on the path

Network Address Translation (NAT)

Problem: Internet Growth

- Today, Internet connects
 - 4B people
 - ~50B devices
- And we're using 32-bit addresses!
 - ~2B unique addresses

The End of New IPv4 Addresses

 Now running on leftover blocks held by the regional registries; much tighter allocation policies

End of the world ? 12/21/12?

A market for IPv4 addresses

https://ipv4marketgroup.com/ipv4-price-trends/

Solution 1: Network Address Translation (NAT)

- Basic idea: Map many "Private" IP addresses to one "Public" IP.
- Allocate IPs for private use (192.168.x, 10.x)

Layering Review

- Remember how layering is meant to work?
 - "Routers don't look beyond the IP header." Well ...

Middleboxes

- Sit "inside the network" but perform "more than IP" processing on packets to add new functionality
 - NAT box, Firewall / Intrusion Detection System

Middleboxes (2)

- Advantages
 - A possible rapid deployment path when no other option
 - Control over many hosts (IT)
- Disadvantages
 - Breaking layering interferes with connectivity
 - strange side effects
 - Poor vantage point for many tasks

NAT (Network Address Translation) Box

- NAT box maps an internal IP to an external IP
 - Many internal hosts connected using few external addresses
 - Middlebox that "translates addresses"
- Motivated by IP address scarcity
 - Controversial at first, now accepted

NAT (2)

- Common scenario:
 - Home computers use "private" IP addresses
 - NAT (in AP/firewall) connects home to ISP using a single external IP address

How NAT Works

- Keeps an internal/external translation table
 - Typically uses IP address + TCP port
 - This is address and port translation

What host thinks	What ISP thinks			
Internal IP:port	External IP : port			
192.168.1.12 : 5523	44.25.80.3 : 1500			
192.168.1.13 : 1234	44.25.80.3 : 1501			
192.168.2.20 : 1234	44.25.80.3 : 1502			

• Need ports to make mapping 1-1 since there are fewer external IPs

How NAT Works (2)

- Internal \rightarrow External:
 - Look up and rewrite Source IP/port

How NAT Works (3)

- External \rightarrow Internal
 - Look up and rewrite Destination IP/port

How NAT Works (4)

- Need to enter translations in the table for it to work
 - Create external name when host makes a TCP connection

NAT in action

[Ratuls-MacBook-Pro:19wi ratul\$ ifconfig en0 en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether f0:18:98:a5:f9:cc inet6 fe80::440:e511:c06f:78f9%en0 prefixlen 64 secured scopeid 0xa inet 192.168.88.14 netmask 0xffffff00 broadcast 192.168.88.255 nd6 options=201<PERFORMNUD,DAD> media: autoselect status: active

whatismyipaddress					, Q			
AII	News	Books	Shopping	Videos	More		Settings	Tools
About 166,000 results (0.45 seconds)								
	171.17 public I	78.94 P addres	S					

NAT Downsides

- Connectivity has been broken!
 - Can only send incoming packets after an outgoing connection is set up
 - Difficult to run servers or peer-to-peer apps (Skype)
- Doesn't work if return traffic by passes the NAT
- Breaks apps that expose their IP addresses (FTP)

NAT Upsides

- Relieves much IP address pressure
 - Many home hosts behind NATs
- Easy to deploy
 - Rapidly, and by you alone
- Useful functionality
 - Firewall, helps with privacy
- Kinks will get worked out eventually
 - "NAT Traversal" for incoming traffic