
TCP recap

Three phases
1. Connection setup
2. Data transfer
• Flow control – don’t overwhelm the receiver

• ARQ – one outstanding packet
• Go-back-N, selective repeat  -- sliding window of W packets
• Tuning flow control (ack clocking, RTT estimation)

• Congestion control

3. Connection release



ACK Clocking



Sliding Window ACK Clock

•Typically, the sender does not know B or D
•Each new ACK advances the sliding window and lets 

a new segment enter the network
• ACKs “clock” data segments
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Benefit of ACK Clocking

•Consider what happens when sender injects a burst 
of segments into the network
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Benefit of ACK Clocking (2)

•Segments are buffered and spread out on slow link
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Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender
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Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
• Now sending at the bottleneck link without queuing!
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Benefit of ACK Clocking (4)

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do 

not queue up in the network
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TCP Uses ACK Clocking

•TCP uses a sliding window because of the value of 
ACK clocking
•Sliding window controls how many segments are 

inside the network
•TCP only sends small bursts of segments to let the 

network keep the traffic smooth
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Problem

•Sliding window has pipelining to keep network busy
•What if the receiver is overloaded?
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Streaming video
Big Iron Wee Mobile

Arg …



Receiver Sliding Window 

•Consider receiver with W buffers
• LAS=LAST ACK SENT
• app pulls in-order data from buffer with recv() call
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Receiver Sliding Window (2) 

•Suppose the next two segments arrive but app does 
not call recv()
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Receiver Sliding Window (3) 

•Suppose the next two segments arrive but app does 
not call recv()
• LAS rises, but we can’t slide window!
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Receiver Sliding Window (4) 

•Further segments arrive (in order) we fill buffer 
•Must drop segments until app recvs!
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Receiver Sliding Window (5) 

•App recv() takes two segments
•Window slides (phew)
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Flow Control

•Avoid loss at receiver by telling sender the available 
buffer space
•WIN=#Acceptable, not W (from LAS)
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Flow Control (2)

•Sender uses lower of the sliding window and flow 
control window (WIN) as the effective window size
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Flow Control (3)

•TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN
• SEQ + length < ACK+WIN
• 4KB buffer at receiver
• Circular buffer of bytes



Topic

•How to set the timeout for sending a retransmission
• Adapting to the network path
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Network



Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent
• Cancel timer when ack is received
• If timer fires, retransmit data as lost
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Retransmit!



Timeout Problem

•Timeout should be “just right”
• Too long à inefficient network capacity use
• Too short à spurious resends waste network capacity

•But what is “just right”?
• Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

• Hard on the Internet (Transport)
• Wide range, variable RTT
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Example of RTTs
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Example of RTTs (2)
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Example of RTTs (3)
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Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice
• TCP TimeoutN = SRTTN + 4*SvarN
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Example of Adaptive Timeout
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Example of Adaptive Timeout (2)
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Adaptive Timeout (2)

•Simple to compute, does a good job of tracking 
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance 
and robustness
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Congestion



TCP to date:

•We can set up and tear connections 
• Connection establishment and release handshakes

•Keep the sending and receiving buffers from 
overflowing (flow control)

What’s missing?



Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it

CSE 461 University of Washington 31

What’s the hold up?

Network



Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the network grew
• Links stayed busy but transfer rates fell by orders of 

magnitude! 
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Nature of Congestion

•Routers/switches have internal buffering 
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Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full
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Nature of Congestion (3)

•Queues help by absorbing bursts when input > 
output rate
•But if input > output rate persistently, queue will 

overflow
• This is congestion

•Congestion is a function of the traffic patterns – can 
occur even if every link has the same capacity
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Effects of Congestion

•What happens to performance as we increase load?



Effects of Congestion (2)

•What happens to performance as we increase load?



Effects of Congestion (3)

•As offered load rises, congestion occurs as queues 
begin to fill:
• Delay and loss rise sharply with load
• Throughput < load (due to loss)
• Goodput << throughput (due to spurious retransmissions)

•None of the above is good!
•Want network performance just before congestion
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TCP Tahoe/Reno

•TCP extensions and features we will study:
• AIMD
• Fair Queuing
• Slow-start
• Fast Retransmission
• Fast Recovery
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TCP Timeline
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(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)
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TCP/IP “flag day”
(BSD Unix 4.2, ‘83)
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. . .
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TCP Timeline (2)
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Bandwidth Allocation

• Important task for network is to allocate its capacity 
to senders
• Good allocation is both efficient and fair

•Efficient: most capacity is used but there is no 
congestion
•Fair: every sender gets a reasonable share of the 

network

CSE 461 University of Washington 43



Efficiency vs. Fairness

•Cannot always have both!
• Example network with traffic:
• AàB, BàC and AàC 

• How much traffic can we carry?
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Efficiency vs. Fairness (2)

• If we care about fairness:
• Give equal bandwidth to each flow
• AàB: ½ unit, BàC: ½, and AàC, ½ 
• Total traffic carried is 1 ½ units
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Efficiency vs. Fairness (3)

• If we care about efficiency:
•Maximize total traffic in network
• AàB: 1 unit, BàC: 1, and AàC, 0 
• Total traffic rises to 2 units!
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Fairness

• What’s a “fair” bandwidth allocation?
• The max-min fair allocation
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The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
• AàC uses more network resources than AàB or BàC
• Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation
• A node that cannot use any bandwidth

• “Equal per flow” is good enough
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Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is  the link that limits 
its bandwidth
•Where congestion occurs for the flow
• For AàC, link A–B is the bottleneck
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Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
• For AàC, link A–B is the bottleneck
• For BàC, link B–C is the bottleneck
• Can no longer divide links equally …
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Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal 
share of that link
•Max-min fair allocation is one that:
• Increasing the rate of one flow will decrease the rate of a 

smaller flow
• This “maximizes the minimum” flow
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Max-Min Fairness (2)

•To find it given a network, imagine “pouring water 
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in 

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows
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Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation? 
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Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5 
• Fix B, C, and D, continue to increase A 
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Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done. 
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Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 
full 
• Other links have extra capacity that can’t be used

• , linksxample: network with 4 flows, links equal 
bandwidth
•What is the max-min fair allocation? 
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Adapting over Time

•Allocation changes as flows start and stop
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Time 



Adapting over Time (2)
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Flow 1 slows when 
Flow 2 starts

Flow 1 speeds up 
when Flow 2 stops

Time 

Flow 3 limit 
is elsewhere


