
TCP recap

Three phases
1. Connection setup
2. Data transfer
• Flow control – don’t overwhelm the receiver

• ARQ – one outstanding packet
• Go-back-N, selective repeat -- sliding window of W packets
• Tuning flow control (ack clocking, RTT estimation)

• Congestion control

3. Connection release

ACK Clocking

Sliding Window ACK Clock

•Typically, the sender does not know B or D
•Each new ACK advances the sliding window and lets

a new segment enter the network
• ACKs “clock” data segments

CSE 461 University of Washington 3

Ack 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11 Data

Benefit of ACK Clocking

•Consider what happens when sender injects a burst
of segments into the network

CSE 461 University of Washington 4

Fast link Fast linkSlow (bottleneck) link

Queue

Benefit of ACK Clocking (2)

•Segments are buffered and spread out on slow link

CSE 461 University of Washington 5

Fast link Fast linkSlow (bottleneck) link

Segments
“spread out”

Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender

CSE 461 University of Washington 6

Slow link
Acks maintain spread

Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
• Now sending at the bottleneck link without queuing!

CSE 461 University of Washington 7

Slow link

Segments spread Queue no longer builds

Benefit of ACK Clocking (4)

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do

not queue up in the network

CSE 461 University of Washington 8

TCP Uses ACK Clocking

•TCP uses a sliding window because of the value of
ACK clocking
•Sliding window controls how many segments are

inside the network
•TCP only sends small bursts of segments to let the

network keep the traffic smooth

CSE 461 University of Washington 9

Problem

•Sliding window has pipelining to keep network busy
•What if the receiver is overloaded?

CSE 461 University of Washington 10

Streaming video
Big Iron Wee Mobile

Arg …

Receiver Sliding Window

•Consider receiver with W buffers
• LAS=LAST ACK SENT
• app pulls in-order data from buffer with recv() call

CSE 461 University of Washington 11

Sliding
Window

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Receiver Sliding Window (2)

•Suppose the next two segments arrive but app does
not call recv()

CSE 461 University of Washington 12

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Receiver Sliding Window (3)

•Suppose the next two segments arrive but app does
not call recv()
• LAS rises, but we can’t slide window!

CSE 461 University of Washington 13

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acked

Receiver Sliding Window (4)

•Further segments arrive (in order) we fill buffer
•Must drop segments until app recvs!

CSE 461 University of Washington 14

Nothing
Acceptable!

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..Too high

seq. number

555 5Acked

LAS

Receiver Sliding Window (5)

•App recv() takes two segments
•Window slides (phew)

CSE 461 University of Washington 15

Acceptable

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..

seq. number

555 5Acked

LAS

Flow Control

•Avoid loss at receiver by telling sender the available
buffer space
•WIN=#Acceptable, not W (from LAS)

CSE 461 University of Washington 16

Acceptable

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..

seq. number

555 5Acked

LAS

Flow Control (2)

•Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size

CSE 461 University of Washington 17

Acceptable

.. 5 6 7 5 2 3 ..

LAS

W=3

Finished 3 ..Too high

seq. number

555 5Acked

CSE 461 University of Washington 18

Flow Control (3)

•TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN
• SEQ + length < ACK+WIN
• 4KB buffer at receiver
• Circular buffer of bytes

Topic

•How to set the timeout for sending a retransmission
• Adapting to the network path

CSE 461 University of Washington 19

Lost?

Network

Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent
• Cancel timer when ack is received
• If timer fires, retransmit data as lost

CSE 461 University of Washington 20

Retransmit!

Timeout Problem

•Timeout should be “just right”
• Too long à inefficient network capacity use
• Too short à spurious resends waste network capacity

•But what is “just right”?
• Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

• Hard on the Internet (Transport)
• Wide range, variable RTT

CSE 461 University of Washington 21

Example of RTTs

CSE 461 University of Washington 22

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s)

BCNàSEAàBCN

Seconds

Example of RTTs (2)

CSE 461 University of Washington 23

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s) Variation due to queuing at routers,

changes in network paths, etc.

BCNàSEAàBCN

Propagation (+transmission) delay ≈ 2D

Seconds

Example of RTTs (3)

CSE 461 University of Washington 24

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Timer too high!

Timer too low!

Need to adapt to the
network conditions

Seconds

Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice
• TCP TimeoutN = SRTTN + 4*SvarN

CSE 461 University of Washington 25

Example of Adaptive Timeout

CSE 461 University of Washington 26

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

RT
T

(m
s)

SRTT

Svar

Seconds

Example of Adaptive Timeout (2)

CSE 461 University of Washington 27

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

RT
T

(m
s)

Timeout (SRTT + 4*Svar)

Early
timeout

Seconds

Adaptive Timeout (2)

•Simple to compute, does a good job of tracking
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance
and robustness

CSE 461 University of Washington 28

Congestion

TCP to date:

•We can set up and tear connections
• Connection establishment and release handshakes

•Keep the sending and receiving buffers from
overflowing (flow control)

What’s missing?

Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it

CSE 461 University of Washington 31

What’s the hold up?

Network

Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the network grew
• Links stayed busy but transfer rates fell by orders of

magnitude!

CSE 461 University of Washington 32

Nature of Congestion

•Routers/switches have internal buffering

CSE 461 University of Washington 33

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full

CSE 461 University of Washington 34

Router

=

(FIFO) Queue
Queued
Packets

Router

Nature of Congestion (3)

•Queues help by absorbing bursts when input >
output rate
•But if input > output rate persistently, queue will

overflow
• This is congestion

•Congestion is a function of the traffic patterns – can
occur even if every link has the same capacity

CSE 461 University of Washington 35

Effects of Congestion

•What happens to performance as we increase load?

Effects of Congestion (2)

•What happens to performance as we increase load?

Effects of Congestion (3)

•As offered load rises, congestion occurs as queues
begin to fill:
• Delay and loss rise sharply with load
• Throughput < load (due to loss)
• Goodput << throughput (due to spurious retransmissions)

•None of the above is good!
•Want network performance just before congestion

CSE 461 University of Washington 38

TCP Tahoe/Reno

•TCP extensions and features we will study:
• AIMD
• Fair Queuing
• Slow-start
• Fast Retransmission
• Fast Recovery

CSE 461 University of Washington 40

TCP Timeline

CSE 461 University of Washington 41

1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)

TCP Timeline (2)

CSE 461 University of Washington 42

201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, ‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, ’06)

. . .

BackgroundRouter support
Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)

Bandwidth Allocation

• Important task for network is to allocate its capacity
to senders
• Good allocation is both efficient and fair

•Efficient: most capacity is used but there is no
congestion
•Fair: every sender gets a reasonable share of the

network

CSE 461 University of Washington 43

Efficiency vs. Fairness

•Cannot always have both!
• Example network with traffic:
• AàB, BàC and AàC

• How much traffic can we carry?

CSE 461 University of Washington 44

A B C
1 1

Efficiency vs. Fairness (2)

• If we care about fairness:
• Give equal bandwidth to each flow
• AàB: ½ unit, BàC: ½, and AàC, ½
• Total traffic carried is 1 ½ units

CSE 461 University of Washington 45

A B C
1 1

Efficiency vs. Fairness (3)

• If we care about efficiency:
•Maximize total traffic in network
• AàB: 1 unit, BàC: 1, and AàC, 0
• Total traffic rises to 2 units!

CSE 461 University of Washington 46

A B C
1 1

Fairness

• What’s a “fair” bandwidth allocation?
• The max-min fair allocation

CSE 461 University of Washington 47

The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
• AàC uses more network resources than AàB or BàC
• Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation
• A node that cannot use any bandwidth

• “Equal per flow” is good enough

CSE 461 University of Washington 48

Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is the link that limits
its bandwidth
•Where congestion occurs for the flow
• For AàC, link A–B is the bottleneck

CSE 461 University of Washington 49

A B C
1 10

Bottleneck

Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
• For AàC, link A–B is the bottleneck
• For BàC, link B–C is the bottleneck
• Can no longer divide links equally …

CSE 461 University of Washington 50

A B C
1 10

Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal
share of that link
•Max-min fair allocation is one that:
• Increasing the rate of one flow will decrease the rate of a

smaller flow
• This “maximizes the minimum” flow

CSE 461 University of Washington 51

Max-Min Fairness (2)

•To find it given a network, imagine “pouring water
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

CSE 461 University of Washington 52

Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation?

CSE 461 University of Washington 53

Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5
• Fix B, C, and D, continue to increase A

CSE 461 University of Washington 54

BottleneckBottleneck

Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done.

CSE 461 University of Washington 55

Bottleneck

Bottleneck

Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5
full
• Other links have extra capacity that can’t be used

• , linksxample: network with 4 flows, links equal
bandwidth
•What is the max-min fair allocation?

CSE 461 University of Washington 56

Adapting over Time

•Allocation changes as flows start and stop

CSE 461 University of Washington 57

Time

Adapting over Time (2)

CSE 461 University of Washington 58

Flow 1 slows when
Flow 2 starts

Flow 1 speeds up
when Flow 2 stops

Time

Flow 3 limit
is elsewhere

