

Recap: Bandwidth allocation

•Want efficiency and fairness
• The two can conflict

•Strict fairness not always the goal
•Max-min fairness is one ideal

•Today
• Achieving bandwidth allocation in the Internet

CSE 461 University of Washington 2

Why is Bandwidth Allocation hard?

•Number of senders and their offered load changes
• Senders may be limited in other ways
• Other parts of network or by applications

•Network is distributed; no single party has an overall
picture of its state

CSE 461 University of Washington 3

Bandwidth Allocation Solution Context

In networks without admission control (e.g., Internet)
Transport and Network layers must work together
• Network layer sees congestion
• Only it can provide direct feedback

• Transport layer causes congestion
• Only it can reduce load

CSE 461 University of Washington 4

Bandwidth Allocation Solution Overview

• Senders adapt concurrently based on their own view
of the network
•Design this adaptation so the network usage as a

whole is efficient and fair
• In practice, efficiency is more important than fairness

•Adaptation is continuous since offered loads continue
to change over time

CSE 461 University of Washington 5

Bandwidth Allocation Models

•Open loop versus closed loop
• Open: reserve bandwidth before use
• Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
• How is allocation expressed?

CSE 461 University of Washington 6
TCP is a closed loop, host-driven, and window-based

Bandwidth Allocation Models (2)

•We’ll study closed-loop, host-driven, and window-
based too
•Network layer returns feedback on current

allocation to senders
• At least tells if there is congestion

•Transport layer adjusts sender’s behavior via
window in response
• How senders adapt is a control law

CSE 461 University of Washington 7

Additive Increase Multiplicative Decrease

•AIMD is a control law hosts can use to reach a good
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

• Let’s explore the AIMD game …

CSE 461 University of Washington 8

AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested

CSE 461 University of Washington 9

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1

AIMD Game (2)

•Each point is a possible allocation

CSE 461 University of Washington 10

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested

AIMD Game (3)

•AI and MD move the allocation

CSE 461 University of Washington 11

Host 1

Host 20 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

AIMD Game (4)

•Play the game!

CSE 461 University of Washington 12

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Game (5)

•Always converge to good allocation!

CSE 461 University of Washington 13

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Sawtooth

•Produces a “sawtooth” pattern over time for rate of
each host
• This is the TCP sawtooth (later)

CSE 461 University of Washington 14

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or
2’s Rate

AIMD Properties

•Converges to an allocation that is efficient and fair
when hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not! (Try
MIAD, MIMD, MIAD)
•Requires only binary feedback from the network

CSE 461 University of Washington 15

Feedback Signals

•Several possible signals, with different pros/cons
•We’ll look at classic TCP that uses packet loss as a signal

CSE 461 University of Washington 16

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay BBR
(Google)

Hear about congestion early
Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

Hear about congestion early
Require router support

Slow Start (TCP Additive Increase)

TCP “Slow Start” Problem

•We want to quickly near the right rate, cwndIDEAL, but
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the

network (loss!)
• Additive Increase with small bursts adapts cwnd gently,

but might take a long time to become efficient

CSE 461 University of Washington 19

Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values

20

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start

Slow-Start Solution (2)

•Eventually packet loss will occur when the network
is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 21

Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value

22

AI

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 23

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 24

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

CSE 461 University of Washington 25

