Topic

e How TCP works!

— The transport protocol used for
most content on the Internet

[ We w TCP/IP!

)
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TCP Features

A reliable bytestream service »

Based on connections

* Sliding window for reliability »
— With adaptive timeout

Flow control for slow receivers
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Reliable Bytestream

* Message boundaries not preserved from send() to recv()
— But reliable and ordered (receive bytes in same order as sent)

Sender Receiver
I[P header \ / TCP header

A B C D A B C D
Four segments, each with 512 bytes of 2048 bytes of data delivered
data and carried in an IP packet to app in a single recv() call
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Reliable Bytestream (2)

 Bidirectional data transfer

— Control information (e.g., Ack)
piggybacks on data segments in
reverse direction

ACK B>A
QCK AB | data AS>B

A B
i data B>A
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TCP Header (1)

* Ports identify apps (socket API)
— 16-bit identifiers

Source port Destination port

Sequence number

Acknowledgement number

TCP CIE|IU|A|P|R|S|F
header W|CIR|C|S|S|Y]|I Window size
length RIE|G|K|H| T|N[N
Checksum Urgent pointer
+ Options (0 or more 32-bit words) %

CSE 461 University of Washington



TCP Header (2)

 seq/Ack used for sliding window

— Selective Repeat, with byte positions

Source port Destination port

Sequence number

Acknowledgement number

TCP CIE|IU|A|P|R|S|F
header W|CIR|C|S|S|Y]|I Window size
length RIE|G|K|H| T|N[N
Checksum Urgent pointer
+ Options (0 or more 32-bit words) %
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TCP Sliding Window — Receiver

* Cumulative Ack tells next expected
byte sequence number (“LAS+1”)

* Optionally, selective Acks (SACK)
give hints for receiver buffer state
— List up to 3 ranges of received bytes

‘ACKqutolOO and 200-299 |
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TCP Sliding Window — Sender

* Uses an adaptive retransmission
timeout to resend data from LAS+1

e Uses heuristics to infer loss quickly
and resend to avoid timeouts

— “Three duplicate Acks” treated as loss

| ACK 100 |

Sender decides 100-199 is lost

AcK 100, | [ Ack 100, | [ Ack 100,
200-299 | (200-399 | | 200-499
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Topic

* Understanding congestion, a
“traffic jam” in the network

— Later we will learn how to control it

What’s the hold up?] A
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Nature of Congestion

* Routers/switches have internal buffering for contention

&= e
T =
Input 5—9 >(—= =)/ Output

—_ = {2 T K T — =

/ - \
Input Buffer Fabric Output Buffer
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Nature of Congestion (2)

* Simplified view of per port output queues
— Typically FIFO (First In First Out), discard when full

Router
Router > T
& = — —
\\Queued

(FIFO) Queue  pgyckets

CSE 461 University of Washington



Nature of Congestion (3)

* Queues help by absorbing bursts
when input > output rate

e But if input > output rate persistently,
queue will overflow

— This is congestion

* Congestion is a function of the traffic
patterns — can occur even if every
link have the same capacity
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Effects of Congestion

* What happens to performance as we increase the load?

A A
_JCapactty

Goodput (packets/sec)
Delay (seconds)

> B
Offered load (packets/sec) Offered load (packets/sec)
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Effects of Congestion (2)

* What happens to performance as we increase the load?

A A

ol Capacity :
§ / m Onset of
%) /‘<f = congestion
2 Desired 8 \ ;
§ response 2
= Congestion ) ___,../ \
=1 collapse 3 i
= ;
Q) -

> .

Offered load (packets/sec) Offered load (packets/sec)
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Effects of Congestion (3)

* As offered load rises, congestion occurs
as queues begin to fill:

— Delay and loss rise sharply with more load
— Throughput falls below load (due to loss)

— Goodput may fall below throughput (due
to spurious retransmissions)

* None of the above is good!

— Want to operate network just
before the onset of congestion
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Bandwidth Allocation

* Important task for network is to
allocate its capacity to senders

— Good allocation is efficient and fair

* Efficient means most capacity is
used but there is no congestion

* Fair means every sender gets a
reasonable share the network
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Bandwidth Allocation (2)

* Key observation:

— In an effective solution, Transport and
Network layers must work together

* Network layer witnesses congestion
— Only it can provide direct feedback

* Transport layer causes congestion
— Only it can reduce offered load
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Bandwidth Allocation (3)

 Why is it hard? (Just split equally!)
— Number of senders and their offered
load is constantly changing

— Senders may lack capacity in different
parts of the network

— Network is distributed; no single party
has an overall picture of its state
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Bandwidth Allocation (4)

* Solution context:

— Senders adapt concurrently based on
their own view of the network

— Design this adaption so the network
usage as a whole is efficient and fair

— Adaption is continuous since offered
loads continue to change over time
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Topics

Nature of congestion

Fair allocations

AIMD control law

TCP Congestion Control history
ACK clocking

TCP Slow-start

TCP Fast Retransmit/Recovery
Congestion Avoidance (ECN)



Topic

 What’s a “fair” bandwidth allocation?

— The max-min fair allocation

9 e
— —> —— —
-_— v | e ——
—> <«
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Recall

* We want a good bandwidth
allocation to be fair and efficient

— Now we learn what fair means

* Caveat: in practice, efficiency is
more important than fairness



Efficiency vs. Fairness

e Cannot always have both!

— Example network with traffic
A—>B, B2>Cand A=>C

— How much traffic can we carry?

ey oy
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Efficiency vs. Fairness (2)

* |f we care about fairness:

— Give equal bandwidth to each flow
— A-2B: % unit, B=2C: %, and A=>C, %
— Total traffic carried is 1 % units

ey oy
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Efficiency vs. Fairness (3)

* If we care about efficiency:

— Maximize total traffic in network
— A->B: 1 unit, B2>C: 1, and A=>C, 0
— Total traffic rises to 2 units!

ey oy
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The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?

— A—>C uses more network resources
(two links) than A=>B or B>C

— Host A sends two flows, B sends one

* Not productive to seek exact fairness

— More important to avoid starvation
— “Equal per flow” is good enough
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Generalizing “Equal per Flow”

* Bottleneck for a flow of traffic is
the link that limits its bandwidth

— Where congestion occurs for the flow
— For A—=>C, link A—-B is the bottleneck

A B C
1 10

Bottleneck
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Generalizing “Equal per Flow” (2)

* Flows may have different bottlenecks
— For A—=>C, link A—-B is the bottleneck
— For B=>C, link B—C is the bottleneck
— Can no longer divide links equally ...

A B C
1 10
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Max-Min Fairness

* Intuitively, flows bottlenecked on a
link get an equal share of that link

* Max-min fair allocation is one that:

— Increasing the rate of one flow will
decrease the rate of a smaller flow

— This “maximizes the minimum” flow
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Max-Min Fairness (2)

* To find it given a network, imagine
“pouring water into the network”
1. Start with all flows at rate O

2. Increase the flows until there is a
new bottleneck in the network

3. Hold fixed the rate of the flows that
are bottlenecked

4. Go to step 2 for any remaining flows
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Max-Min Example

* Example: network with 4 flows, links equal bandwidth

— What is the max-min fair allocation?

A
Ae——— — :-*ﬁ/']
R1 R3 B
B

- 7 - C
he” R4 R5 R6 :D
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Max-Min Example (2)

 When rate=1/3, flows B, C, and D bottleneck R4—R5

— Fix B, C, and D, continue to increase A

A
A - - -
N S -~
R1 R R3 B
B e Bottlenec\lf
o a . P~ -C
Cce | | ( ) - B

5o R4 ~ R5 R6 D
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Max-Min Example (3)
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck

AT - v — '
R1 R Y R3
B e Bottlenec\lf
. ya / —
co (o ©

5o R4 ~ R5 R6
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Max-Min Example (4)

* End with A=2/3, B, C, D=1/3, and R2—R3, R4—RS5 full

— Other links have extra capacity that can’t be used

—
R1

R2 173 R3 B
1/3

B
1/3
— \J/S —7 1/3

C
D/\Fﬁ/ 1/3 RS 1/3
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Adapting over Time

* Allocation changes as flows start and stop

A
1
5
= R
3 Flow 1
©
£
= I\ )
3 : Flow 2 starts :
: s Flow 3 starts !
1 4 9 Time
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Adapting over Time (2)

A Flow 1 slows when Flow 1 speeds up
1 Flow 2 starts when Flow 2 stops
-
o
Jp
low 1 ..

= © Flow 3 limit
= is elsewhere
g 0o | Flow 2
© | \ |
é : Flow 2 starts :‘J

: s Flow 3 starts !

1 4 9 Time
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