Topic

e How TCP works!

— The transport protocol used for
most content on the Internet

[We w TCP/IP!

)

CSE 461 University of Washington

TCP Features

A reliable bytestream service »

Based on connections

* Sliding window for reliability »
— With adaptive timeout

Flow control for slow receivers

CSE 461 University of Washington

Reliable Bytestream

* Message boundaries not preserved from send() to recv()
— But reliable and ordered (receive bytes in same order as sent)

Sender Receiver
I[P header \ / TCP header

A B C D A B C D
Four segments, each with 512 bytes of 2048 bytes of data delivered
data and carried in an IP packet to app in a single recv() call

CSE 461 University of Washington 3

Reliable Bytestream (2)

 Bidirectional data transfer

— Control information (e.g., Ack)
piggybacks on data segments in
reverse direction

ACK B>A
QCK AB | data AS>B

A B
i data B>A

CSE 461 University of Washington

TCP Header (1)

* Ports identify apps (socket API)
— 16-bit identifiers

Source port Destination port

Sequence number

Acknowledgement number

TCP CIE|IU|A|P|R|S|F
header W|CIR|C|S|S|Y]|I Window size
length RIE|G|K|H| T|N[N
Checksum Urgent pointer
+ Options (0 or more 32-bit words) %

CSE 461 University of Washington

TCP Header (2)

 seq/Ack used for sliding window

— Selective Repeat, with byte positions

Source port Destination port

Sequence number

Acknowledgement number

TCP CIE|IU|A|P|R|S|F
header W|CIR|C|S|S|Y]|I Window size
length RIE|G|K|H| T|N[N
Checksum Urgent pointer
+ Options (0 or more 32-bit words) %

CSE 461 University of Washington

TCP Sliding Window — Receiver

* Cumulative Ack tells next expected
byte sequence number (“LAS+1”)

* Optionally, selective Acks (SACK)
give hints for receiver buffer state
— List up to 3 ranges of received bytes

‘ACKqutolOO and 200-299 |

CSE 461 University of Washington

TCP Sliding Window — Sender

* Uses an adaptive retransmission
timeout to resend data from LAS+1

e Uses heuristics to infer loss quickly
and resend to avoid timeouts

— “Three duplicate Acks” treated as loss

| ACK 100 |

Sender decides 100-199 is lost

AcK 100, | [Ack 100, | [Ack 100,
200-299 | (200-399 | | 200-499

CSE 461 University of Washington

Topic

* Understanding congestion, a
“traffic jam” in the network

— Later we will learn how to control it

What’s the hold up?] A

CSE 461 University of Washington

Nature of Congestion

* Routers/switches have internal buffering for contention

&= e
T =
Input 5—9 >(—= =)/ Output

—_ = {2 T K T — =

/ - \
Input Buffer Fabric Output Buffer

CSE 461 University of Washington 10

Nature of Congestion (2)

* Simplified view of per port output queues
— Typically FIFO (First In First Out), discard when full

Router
Router > T
& = — —
\\Queued

(FIFO) Queue pgyckets

CSE 461 University of Washington

Nature of Congestion (3)

* Queues help by absorbing bursts
when input > output rate

e But if input > output rate persistently,
queue will overflow

— This is congestion

* Congestion is a function of the traffic
patterns — can occur even if every
link have the same capacity

CSE 461 University of Washington

12

Effects of Congestion

* What happens to performance as we increase the load?

A A
_JCapactty

Goodput (packets/sec)
Delay (seconds)

> B
Offered load (packets/sec) Offered load (packets/sec)

CSE 461 University of Washington 13

Effects of Congestion (2)

* What happens to performance as we increase the load?

A A

ol Capacity :
§ / m Onset of
%) /‘<f = congestion
2 Desired 8 \ ;
§ response 2
= Congestion) ___,../ \
=1 collapse 3 i
= ;
Q) -

> .

Offered load (packets/sec) Offered load (packets/sec)

CSE 461 University of Washington 14

Effects of Congestion (3)

* As offered load rises, congestion occurs
as queues begin to fill:

— Delay and loss rise sharply with more load
— Throughput falls below load (due to loss)

— Goodput may fall below throughput (due
to spurious retransmissions)

* None of the above is good!

— Want to operate network just
before the onset of congestion

CSE 461 University of Washington

15

Bandwidth Allocation

* Important task for network is to
allocate its capacity to senders

— Good allocation is efficient and fair

* Efficient means most capacity is
used but there is no congestion

* Fair means every sender gets a
reasonable share the network

CSE 461 University of Washington

16

Bandwidth Allocation (2)

* Key observation:

— In an effective solution, Transport and
Network layers must work together

* Network layer witnesses congestion
— Only it can provide direct feedback

* Transport layer causes congestion
— Only it can reduce offered load

CSE 461 University of Washington

17

Bandwidth Allocation (3)

 Why is it hard? (Just split equally!)
— Number of senders and their offered
load is constantly changing

— Senders may lack capacity in different
parts of the network

— Network is distributed; no single party
has an overall picture of its state

CSE 461 University of Washington

18

Bandwidth Allocation (4)

* Solution context:

— Senders adapt concurrently based on
their own view of the network

— Design this adaption so the network
usage as a whole is efficient and fair

— Adaption is continuous since offered
loads continue to change over time

CSE 461 University of Washington

19

Topics

Nature of congestion

Fair allocations

AIMD control law

TCP Congestion Control history
ACK clocking

TCP Slow-start

TCP Fast Retransmit/Recovery
Congestion Avoidance (ECN)

Topic

 What’s a “fair” bandwidth allocation?

— The max-min fair allocation

9 e
— —> —— —
-_— v | e ——
—> <«

CSE 461 University of Washington

21

Recall

* We want a good bandwidth
allocation to be fair and efficient

— Now we learn what fair means

* Caveat: in practice, efficiency is
more important than fairness

Efficiency vs. Fairness

e Cannot always have both!

— Example network with traffic
A—>B, B2>Cand A=>C

— How much traffic can we carry?

ey oy

CSE 461 University of Washington

23

Efficiency vs. Fairness (2)

* |f we care about fairness:

— Give equal bandwidth to each flow
— A-2B: % unit, B=2C: %, and A=>C, %
— Total traffic carried is 1 % units

ey oy

CSE 461 University of Washington

24

Efficiency vs. Fairness (3)

* If we care about efficiency:

— Maximize total traffic in network
— A->B: 1 unit, B2>C: 1, and A=>C, 0
— Total traffic rises to 2 units!

ey oy

CSE 461 University of Washington

25

The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?

— A—>C uses more network resources
(two links) than A=>B or B>C

— Host A sends two flows, B sends one

* Not productive to seek exact fairness

— More important to avoid starvation
— “Equal per flow” is good enough

CSE 461 University of Washington

26

Generalizing “Equal per Flow”

* Bottleneck for a flow of traffic is
the link that limits its bandwidth

— Where congestion occurs for the flow
— For A—=>C, link A—-B is the bottleneck

A B C
1 10

Bottleneck

CSE 461 University of Washington

27

Generalizing “Equal per Flow” (2)

* Flows may have different bottlenecks
— For A—=>C, link A—-B is the bottleneck
— For B=>C, link B—C is the bottleneck
— Can no longer divide links equally ...

A B C
1 10

CSE 461 University of Washington

28

Max-Min Fairness

* Intuitively, flows bottlenecked on a
link get an equal share of that link

* Max-min fair allocation is one that:

— Increasing the rate of one flow will
decrease the rate of a smaller flow

— This “maximizes the minimum” flow

CSE 461 University of Washington

29

Max-Min Fairness (2)

* To find it given a network, imagine
“pouring water into the network”
1. Start with all flows at rate O

2. Increase the flows until there is a
new bottleneck in the network

3. Hold fixed the rate of the flows that
are bottlenecked

4. Go to step 2 for any remaining flows

CSE 461 University of Washington

30

Max-Min Example

* Example: network with 4 flows, links equal bandwidth

— What is the max-min fair allocation?

A
Ae——— — :-*ﬁ/']
R1 R3 B
B

- 7 - C
he” R4 R5 R6 :D

CSE 461 University of Washington 31

Max-Min Example (2)

 When rate=1/3, flows B, C, and D bottleneck R4—R5

— Fix B, C, and D, continue to increase A

A
A - - -
N S -~
R1 R R3 B
B e Bottlenec\lf
o a . P~ -C
Cce | | () - B

5o R4 ~ R5 R6 D

CSE 461 University of Washington

32

Max-Min Example (3)
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck

AT - v — '
R1 R Y R3
B e Bottlenec\lf
. ya / —
co (o ©

5o R4 ~ R5 R6

CSE 461 University of Washington

33

Max-Min Example (4)

* End with A=2/3, B, C, D=1/3, and R2—R3, R4—RS5 full

— Other links have extra capacity that can’t be used

—
R1

R2 173 R3 B
1/3

B
1/3
— \J/S —7 1/3

C
D/\Fﬁ/ 1/3 RS 1/3

CSE 461 University of Washington 34

Adapting over Time

* Allocation changes as flows start and stop

A
1
5
= R
3 Flow 1
©
£
= I\)
3 : Flow 2 starts :
: s Flow 3 starts !
1 4 9 Time

CSE 461 University of Washington 35

Adapting over Time (2)

A Flow 1 slows when Flow 1 speeds up
1 Flow 2 starts when Flow 2 stops
-
o
Jp
low 1 ..

= © Flow 3 limit
= is elsewhere
g 0o | Flow 2
© | \ |
é : Flow 2 starts :‘J

: s Flow 3 starts !

1 4 9 Time

CSE 461 University of Washington 36

