Virtual Private Networks (VPNs)
- Run as closed networks on Internet
- Use IPSEC to secure messages
Motivation

• The best part of IP connectivity
 – You can send to any other host
• The worst part of IP connectivity
 – Any host can send packets to you!
 – There’s nasty stuff out there ...
Motivation (2)

- Often desirable to separate network from the Internet, e.g., a company
 - Private network with leased lines
 - Physically separated from Internet
Motivation (3)

- Idea: Use the public Internet instead of leased lines – cheaper!
 - Logically separated from Internet ...
 - This is a Virtual Private Network (VPN)
Goal and Threat Model

• Goal is to keep a logical network (VPN) separate from the Internet while using it for connectivity
 – Threat is Trudy may access VPN and intercept or tamper with messages
Tunneling

• How can we build a virtual link? With tunneling!
 – Hosts in private network send to each other normally
 – To cross virtual link (tunnel), endpoints encapsulate packet
Tunneling (2)

- Tunnel endpoints encapsulate IP packets ("IP in IP")
 - Add/modify outer IP header for delivery to remote endpoint

```
        App
         |    TCP
         |   IP
         |  802.11

        IP    IP    IP
        |    |    |
        |    |    |
        |    |    |    Tunnel
        |    |    |    Endpoint
        |    |    |    Many
        |    |    |    Routers!

        IP    IP    IP
        |    |    |
        |    |    |
        |    |    |    Tunnel
        |    |    |    Endpoint

        IP    IP    IP
        |    |    |
        |    |    |
        |    |    |    802.11

        802.11

Private Network A  Public Internet  Private Network B
```
Tunneling (3)

- Simplest encapsulation wraps packet with another IP header
 - Outer (tunnel) IP header has tunnel endpoints as source/destination
 - Inner packet has private network IP addresses as source/destination

Outer (Tunnel) IP Inner packet

IP IP TCP HTTP
Tunneling (4)

- Tunneling alone is not secure ...
 - No confidentiality, integrity/ authenticity
 - Trudy can read, inject her own messages
 - We require cryptographic protections!
- IPSEC (IP Security) is often used to secure VPN tunnels
IPSEC (IP Security)

• Longstanding effort to secure the IP layer
 – Adds confidentiality, integrity/authenticity

• IPSEC operation:
 – Keys are set up for communicating host pairs
 – Communication becomes more connection-oriented
 – Header and trailer added to protect IP packets
 – Encapsulating Security Payloads (ESP) provide confidentiality, data integrity, authentication, and anti-replay service
Takeaways

• VPNs are useful for building networks on top of the Internet
 – Virtual links encapsulate packets
 – Alters IP connectivity for hosts

• VPNs need crypto to secure messages
 – Typically IPSEC is used for confidentiality, integrity/authenticity
• Distributed Denial-of-Service (DDOS)
 – An attack on network availability
Topic

- Distributed Denial-of-Service (DDOS)
 - An attack on network availability
Motivation

- The best part of IP connectivity
 - You can send to any other host
- The worst part of IP connectivity
 - Any host can send packets to you!
Motivation (2)

- Flooding a host with many packets can interfere with its IP connectivity
 - Host may become unresponsive
 - This is a form of denial-of-service
Goal and Threat Model

• Goal is for host to keep network connectivity for desired services
 – Threat is Dave may overwhelm host with undesired traffic
Internet Reality

- Distributed Denial-of-Service is a huge problem!
 - Akamai Q3-12 reports DDOS against US banks peaking at 65 Gbps ...

- There are no great solutions
 - CDNs, network traffic filtering, and best practices all help
Denial-of-Service

- Denial-of-service means a system is made unavailable to intended users
 - Typically because its resources are consumed by attackers instead

- In the network context:
 - “System” means server
 - “Resources” mean bandwidth (network) or CPU/memory (host)
Host Denial-of-Service

- Strange packets can sap host resources!
 - “Ping of Death” malformed packet
 - “SYN flood” sends many TCP connect requests and never follows up
 - Few bad packets can overwhelm host

- Patches exist for these vulnerabilities
 - Read about “SYN cookies” for interest
Network Denial-of-Service

- Network DOS needs many packets
 - To saturate network links
 - Causes high congestion/loss

- Helpful to have many attackers ...
 or Distributed Denial-of-Service
Distributed Denial-of-Service (DDOS)

- **Botnet** provides many attackers in the form of compromised hosts
 - Hosts send traffic flood to victim
 - Network saturates near victim

![Diagram showing a Botnet attacking a Victim](image-url)
Complication: Spoofing

- Attackers can falsify their IP address
 - Put fake source address on packets
 - Historically network doesn’t check
 - Hides location of the attackers
 - Called IP address spoofing
Spoofing (2)

• Actually, it’s worse than that
 – Dave can trick Bob into really sending packets to Alice
 – To do so, Dave spoofs Alice to Bob

Huh?

1: To Bob
 From: “Alice”

2: To Alice
 From Bob
 (reply)

Alice

Bob

Dave
Best Practice: Ingress Filtering

- Idea: Validate the IP source address of packets at ISP boundary (Duh!)
 - **Ingress filtering** is a best practice, but deployment has been slow
Flooding Defenses

1. Increase network capacity around the server; harder to cause loss
 - Use a CDN for high peak capacity

2. Filter out attack traffic within the network (at routers)
 - The earlier the filtering, the better
 - Ultimately what is needed, but ad hoc measures by ISPs today