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Topic
• IP version 6, the future of IPv4 that 

is now (still) being deployed

Why do I want IPv6 again?
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• At least a billion 
Internet hosts and 
growing …

• And we’re using 
32-bit addresses!

Internet Growth



The End of New IPv4 Addresses
• Now running on leftover blocks held by the regional 

registries; much tighter allocation policies
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IANA
(All IPs)

ARIN 
(US, Canada)

APNIC
(Asia Pacific)

RIPE
(Europe)
LACNIC

(Latin Amer.)
AfriNIC
(Africa)

ISPs

Companies

Exhausted
on 2/11! End of the world ? 12/21/12?

Exhausted
on 4/11

and 9/12!
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IP Version 6 to the Rescue
• Effort started by the IETF in 1994

– Much larger addresses (128 bits)
– Many sundry improvements

• Became an IETF standard in 1998
– Nothing much happened for a decade
– Hampered by deployment issues, and a 

lack of adoption incentives 
– Big push ~2011 as exhaustion looms



IPv6 Deployment
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Time for
growth!

Source: Google IPv6 Statistics, 30/1/13

Percentage of users accessing Google via IPv6
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IPv6
• Features large addresses
– 128 bits, most of header

• New notation
– 8 groups of 4 hex digits (16 bits)
– Omit leading zeros, groups of zeros

Ex:   2001:0db8:0000:0000:0000:ff00:0042:8329
à

32 bits
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IPv6 (2)
• Lots of other, smaller changes
– Streamlined header processing
– Flow label to group of packets
– Better fit with “advanced” features 

(mobility, multicasting, security)

32 bits
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IPv6 Transition
• The Big Problem:
– How to deploy IPv6?
– Fundamentally incompatible with IPv4

• Dozens of approaches proposed
– Dual stack (speak IPv4 and IPv6)
– Translators (convert packets)
– Tunnels (carry IPv6 over IPv4) »



Tunneling 
• Native IPv6 islands connected via IPv4
– Tunnel carries IPv6 packets across IPv4 network
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Tunneling (2)
• Tunnel acts as a single link across IPv4 network
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User UserTunnel
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Topic
• What is NAT (Network Address 

Translation)? How does it work?
– NAT is widely used at the edges of the 

network, e.g., homes

I’m a NAT box too!

Internet



Layering Review
• Remember how layering is meant to work?
– “Routers don’t look beyond the IP header.” Well …
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Middleboxes
• Sit “inside the network” but perform “more than IP” 

processing on packets to add new functionality
– NAT box, Firewall / Intrusion Detection System
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Middleboxes (2)
• Advantages
– A possible rapid deployment path 

when there is no other option
– Control over many hosts (IT)

• Disadvantages
– Breaking layering interferes with 

connectivity; strange side effects
– Poor vantage point for many tasks
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NAT (Network Address Translation) Box
• NAT box connects an internal 

network to an external network
– Many internal hosts are connected 

using few external addresses
– Middlebox that “translates addresses”

• Motivated by IP address scarcity
– Controversial at first, now accepted
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NAT (2)
• Common scenario:

– Home computers use “private” IP addresses
– NAT (in AP/firewall) connects home to ISP 

using a single external IP address

ISP

Unmodified computers at home Looks like one 
computer outside

NAT box
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How NAT Works
• Keeps an internal/external table

– Typically uses IP address + TCP port
– This is address and port translation

• Need ports to make mapping 1-1     
since there are fewer external IPs

Internal  IP:port External  IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500
192.168.1.13 : 1234 44.25.80.3 : 1501
192.168.2.20 : 1234 44.25.80.3 : 1502

What ISP thinksWhat host thinks



How NAT Works (2)
• Internal à External:
– Look up and rewrite Source IP/port
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Internal  IP:port External  IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External 
destination
IP=X, port=Y

Internal
source

Src =
Dst =

Src =
Dst =



How NAT Works (3)
• External à Internal
– Look up and rewrite Destination IP/port
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Internal  IP:port External  IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External 
source

IP=X, port=Y
Internal

destination

Src =
Dst =

Src =
Dst =



How NAT Works (4)
• Need to enter translations in the table for it to work
– Create external name when host makes a TCP connection
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Internal  IP:port External  IP : port
192.168.1.12 : 5523

NAT box

External 
destination
IP=X, port=Y

Internal
source

Src =
Dst =

Src =
Dst =
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NAT Downsides
• Connectivity has been broken!
– Can only send incoming packets after 

an outgoing connection is set up
– Difficult to run servers or peer-to-peer 

apps (Skype) at home 

• Doesn’t work so well when there are 
no connections (UDP apps)

• Breaks apps that unwisely expose 
their IP addresses (FTP)
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NAT Upsides
• Relieves much IP address pressure
– Many home hosts behind NATs

• Easy to deploy
– Rapidly, and by you alone

• Useful functionality
– Firewall, helps with privacy

• Kinks will get worked out eventually
– “NAT Traversal” for incoming traffic
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Where we are in the Course
• More fun in the Network Layer!
– We’ve covered packet forwarding 
– Now we’ll learn about routing

Physical
Link

Network
Transport
Application



Routing versus Forwarding
• Forwarding is the 

process of sending a 
packet on its way

• Routing is the process 
of deciding in which 
direction to send traffic
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Forward!
packet

Which way?

Which way?

Which way?



Improving on the Spanning Tree
• Spanning tree provides 

basic connectivity
– e.g., some path BàC

• Routing uses all links to 
find “best” paths
– e.g., use BC, BE, and CE
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A B C

D E F

A B C

D E F

Unused



Perspective on Bandwidth Allocation
• Routing allocates network bandwidth adapting to 

failures; other mechanisms used at other timescales 
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Mechanism Timescale / Adaptation
Load-sensitive routing Seconds / Traffic hotspots
Routing Minutes / Equipment failures
Traffic Engineering Hours / Network load
Provisioning Months / Network customers



Delivery Models
• Different routing used for different delivery models
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Unicast
(§5.2)

Multicast
(§5.2.8)

Anycast
(§5.2.9)

Broadcast
(§5.2.7)
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Goals of Routing Algorithms
• We want several properties of any 

routing scheme:

Property Meaning
Correctness Finds paths that work
Efficient paths Uses network bandwidth well
Fair paths Doesn’t starve any nodes
Fast convergence Recovers quickly after changes
Scalability Works well as network grows large
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Rules of Routing Algorithms
• Decentralized, distributed setting

– All nodes are alike; no controller
– Nodes only know what they learn by 

exchanging messages with neighbors 
– Nodes operate concurrently 
– May be node/link/message failures

Who’s there?
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Topics
• IPv4, IPv6, NATs and all that

• Shortest path routing
• Distance Vector routing
• Flooding
• Link-state routing
• Equal-cost multi-path
• Inter-domain routing (BGP)

This
time

Last
time
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Topic
• Defining “best” paths with link costs
– These are shortest path routes

Best?

A B

C

D

E

F

G

H
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What are “Best” paths anyhow?
• Many possibilities:
– Latency, avoid circuitous paths
– Bandwidth, avoid slow links
– Money, avoid expensive links
– Hops, to reduce switching

• But only consider topology
– Ignore workload, e.g., hotspots

A B

C

D

E

F

G

H
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Shortest Paths
We’ll approximate “best” by a cost 
function that captures the factors

– Often call lowest “shortest”

1. Assign each link a cost (distance)
2. Define best path between each     

pair of nodes as the path that has  
the lowest total cost (or is shortest)

3. Pick randomly to any break ties
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Shortest Paths (2)
• Find the shortest path A à E

• All links are bidirectional, with 
equal costs in each direction
– Can extend model to unequal         

costs if needed
A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3
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Shortest Paths (3)
• ABCE is a shortest path
• dist(ABCE) = 4 + 2 + 1 = 7

• This is less than:
– dist(ABE) = 8
– dist(ABFE) = 9
– dist(AE) = 10
– dist(ABCDE) = 10

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3
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Shortest Paths (4)

• Optimality property:
– Subpaths of shortest paths                

are also shortest paths 

• ABCE is a shortest path
àSo are ABC, AB, BCE, BC, CE

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3



CSE 461 University of Washington 37

Sink Trees
• Sink tree for a destination is         

the union of all shortest paths    
towards the destination
– Similarly source tree

• Find the sink tree for E
A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3
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Sink Trees (2)
• Implications:
– Only need to use destination               

to follow shortest paths
– Each node only need to send               

to the next hop

• Forwarding table at a node
– Lists next hop for each destination
– Routing table may know more

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3
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Topic
• How to compute shortest paths  

given the network topology
– With Dijkstra’s algorithm

Source tree
for E

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3
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Edsger W. Dijkstra (1930-2002)
• Famous computer scientist
– Programming languages
– Distributed algorithms
– Program verification

• Dijkstra’s algorithm, 1969
– Single-source shortest paths, given 

network with non-negative link costs
By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons
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Dijkstra’s Algorithm
Algorithm:
• Mark all nodes tentative, set distances 

from source to 0 (zero) for source, and 
∞ (infinity) for all other nodes

• While tentative nodes remain:
– Extract N, a node with lowest distance
– Add link to N to the shortest path tree
– Relax the distances of neighbors of  N by 

lowering any better distance estimates



Dijkstra’s Algorithm (2)
• Initialization
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A B

C

D

E

F

G

H
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1
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4

2
4

4
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3
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0 ∞

∞ ∞

∞

∞

∞

We’ll compute 
shortest paths 

from A ∞



Dijkstra’s Algorithm (3)
• Relax around A
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A B
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Dijkstra’s Algorithm (4)
• Relax around B
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A B

C

D

E

F

G
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1
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2

2
4
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4
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3
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6
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Dijkstra’s Algorithm (5)
• Relax around C
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A B

C

D

E

F

G

H
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4
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4
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0

7
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6

7
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Dijkstra’s Algorithm (6)
• Relax around G (say)
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A B

C
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0

7
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7
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Dijkstra’s Algorithm (7)
• Relax around F (say)
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A B
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Dijkstra’s Algorithm (8)
• Relax around E
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Dijkstra’s Algorithm (9)
• Relax around D
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Dijkstra’s Algorithm (10)
• Finally, H … done
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Dijkstra Comments
• Finds shortest paths in order of 

increasing distance from source
– Leverages optimality property

• Runtime depends on efficiency of 
extracting min-cost node
– Superlinear in network size (grows fast)

• Gives complete source/sink tree
– More than needed for forwarding!
– But requires complete topology 
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Topic
• How to compute shortest paths  in 

a distributed network
– The Distance Vector (DV) approach

Here’s my vector! Here’s mine
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Distance Vector Routing
• Simple, early routing approach

– Used in ARPANET, and RIP

• One of two main approaches to routing
– Distributed version of Bellman-Ford
– Works, but very slow convergence      after 

some failures 

• Link-state algorithms are now     typically 
used in practice
– More involved, better behavior
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Distance Vector Setting
Each node computes its forwarding table            
in a distributed setting:

1. Nodes know only the cost to their 
neighbors; not the topology

2. Nodes can talk only to their neighbors  
using messages

3. All nodes run the same algorithm 
concurrently

4. Nodes and links may fail, messages          
may be lost
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Distance Vector Algorithm
Each node maintains a vector of distances  
(and next hops) to all destinations

1. Initialize vector with 0 (zero) cost to 
self, ∞ (infinity) to other destinations

2. Periodically send vector to neighbors
3. Update vector for each destination by 

selecting the shortest distance heard, 
after adding cost of neighbor link
– Use the best neighbor for forwarding



Distance Vector (2)
• Consider from the point of view of node A
– Can only talk to nodes B and E
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A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

To Cost
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Initial
vector



Distance Vector (3)
• First exchange with B, E; learn best 1-hop routes
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A B

C

D

E
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G

H

2
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10
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2
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2
4

4

3
3

3

A’s 
Cost

A’s 
Next

0 --
4 B
∞ --
∞ --
10 E
∞ --
∞ --
∞ --

To B 
says

E 
says

A ∞ ∞
B 0 ∞
C ∞ ∞
D ∞ ∞
E ∞ 0
F ∞ ∞
G ∞ ∞
H ∞ ∞

B   
+4

E 
+10

∞ ∞
4 ∞
∞ ∞
∞ ∞
∞ 10
∞ ∞
∞ ∞
∞ ∞

Learned better route



Distance Vector (4)
• Second exchange; learn best 2-hop routes
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A B

C

D

E

F

G

H
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A’s 
Cost

A’s 
Next

0 --
4 B
6 B
12 E
8 B
7 B
7 B
∞ --

To B 
says

E 
says

A 4 10
B 0 4
C 2 1
D ∞ 2
E 4 0
F 3 2
G 3 ∞
H ∞ ∞

B   
+4

E 
+10

8 20
4 14
6 11
∞ 12
8 10
7 12
7 ∞
∞ ∞



Distance Vector (4)
• Third exchange; learn best 3-hop routes
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E 
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A 4 8
B 0 3
C 2 1
D 4 2
E 3 0
F 3 2
G 3 6
H 5 4

B   
+4

E 
+10

8 18
4 13
6 11
8 12
7 10
7 12
7 16
9 14



Distance Vector (5)
• Subsequent exchanges; converged
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Distance Vector Dynamics
• Adding routes:
– News travels one hop per exchange

• Removing routes
– When a node fails, no more 

exchanges, other nodes forget

• But partitions (unreachable nodes   
in divided network) are a problem
– “Count to infinity” scenario



DV Dynamics (2)
• Good news travels quickly, bad news slowly (inferred)
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“Count to infinity” scenario

Desired convergence

X
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DV Dynamics (3)
• Various heuristics to address

– e.g., “Split horizon, poison reverse”   
(Don’t send route back to where            
you learned it from.)

• But none are very effective
– Link state now favored in practice
– Except when very resource-limited
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RIP (Routing Information Protocol)
• DV protocol with hop count as metric

– Infinity is 16 hops; limits network size
– Includes split horizon, poison reverse

• Routers send vectors every 30 seconds
– Runs on top of UDP
– Time-out in 180 secs to detect failures

• RIPv1 specified in RFC1058 (1988)
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Topic
• How to broadcast a message to all 

nodes in the network with flooding
– Simple mechanism, but inefficient

Flood!
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Flooding
• Rule used at each node:
– Sends an incoming message on to     

all other neighbors
– Remember the message so that it        

is only flood once 

• Inefficient because one node may 
receive multiple copies of message



Flooding (2)
• Consider a flood from A; first reaches B via AB, E via AE
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A B

C

D

E

F

G

H



Flooding (3)
• Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, EF
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A B

C

D

E

F

G

H

F gets 2 copies

E and B send 
to each other



Flooding (4)
• C floods CD, CH; D floods DC; F floods FG; G floods GF
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A B

C

D

E

F

G

H

F gets another copy



Flooding (5)
• H has no-one to flood … and we’re done
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A B

C

D

E

F

G

H

Each link carries the 
message, and in at 
least one direction
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Flooding Details
• Remember message (to stop flood) 

using source and sequence number
– So next message (with higher 

sequence number) will go through

• To make flooding reliable, use ARQ
– So receiver acknowledges, and   

sender resends if needed



CSE 461 University of Washington 72

Topic
• How to compute shortest paths  in 

a distributed network
– The Link-State (LS) approach

Flood! … then compute
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Link-State Routing
• One of two approaches to routing
– Trades more computation than 

distance vector for better dynamics 

• Widely used in practice
– Used in Internet/ARPANET from 1979
– Modern networks use OSPF and IS-IS
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Link-State Setting
Nodes compute their forwarding table in the 
same distributed setting as for distance vector:

1. Nodes know only the cost to their 
neighbors; not the topology

2. Nodes can talk only to their neighbors  
using messages

3. All nodes run the same algorithm 
concurrently

4. Nodes/links may fail, messages may be lost
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Link-State Algorithm
Proceeds in two phases:
1. Nodes flood topology in the form 

of link state packets
– Each node learns full topology

2. Each node computes its own 
forwarding table
– By running Dijkstra (or equivalent)
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Phase 1: Topology Dissemination
• Each node floods link state packet 

(LSP) that describes their portion  
of the topology

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Seq. #
A 10
B 4
C 1
D 2
F 2

Node E’s LSP 
flooded to A, B, 
C, D, and F



CSE 461 University of Washington 77

Phase 2: Route Computation
• Each node has full topology

– By combining all LSPs

• Each node simply runs Dijkstra
– Some replicated computation, but      

finds required routes directly
– Compile forwarding table from 

sink/source tree
– That’s it folks!



Forwarding Table
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To Next
A C
B C
C C
D D
E --
F F
G F
H CA B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Source Tree for E (from Dijkstra) E’s Forwarding Table



Handling Changes
• On change, flood updated LSPs, and re-compute routes
– E.g., nodes adjacent to failed link or node initiate
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4
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XXXXSeq. #
A 4
C 2
E 4
F 3
G ∞

B’s LSP
Seq. #

B 3
E 2
G ∞

F’s LSP Failure!
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Handling Changes (2)
• Link failure
– Both nodes notice, send updated LSPs
– Link is removed from topology

• Node failure
– All neighbors notice a link has failed
– Failed node can’t update its own LSP
– But it is OK: all links to node removed
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Handling Changes (3)
• Addition of a link or node
– Add LSP of new node to topology
– Old LSPs are updated with new link

• Additions are the easy case …
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Link-State Complications
• Things that can go wrong:

– Seq. number reaches max, or is corrupted
– Node crashes and loses seq. number
– Network partitions then heals

• Strategy:
– Include age on LSPs and forget old 

information that is not refreshed

• Much of the complexity is due to 
handling corner cases (as usual!)



DV/LS Comparison
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Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute
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IS-IS and OSPF Protocols
• Widely used in large enterprise     

and ISP networks
– IS-IS = Intermediate System to 

Intermediate System
– OSPF = Open Shortest Path First

• Link-state protocol with many   
added features
– E.g., “Areas” for scalability
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Topic
• More on shortest path routes
– Allow multiple shortest paths

Use ABE as well as 
ABCE from AàE

A B

C

D

E

F

G

H
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Multipath Routing
• Allow multiple routing paths from 

node to destination be used at once
– Topology has them for redundancy
– Using them can improve performance

• Questions:
– How do we find multiple paths?
– How do we send traffic along them?
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Equal-Cost Multipath Routes
• One form of multipath routing

– Extends shortest path model by
keeping set if there are ties

• Consider AàE
– ABE = 4 + 4 = 8
– ABCE = 4 + 2 + 2 = 8
– ABCDE = 4 + 2 + 1 + 1 = 8
– Use them all!

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3
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Source “Trees”
• With ECMP, source/sink “tree” is a 

directed acyclic graph (DAG)
– Each node has set of next hops
– Still a compact representation

Tree DAG
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Source “Trees” (2)
• Find the source “tree” for E
– Procedure is Dijkstra, simply 

remember set of next hops
– Compile forwarding table similarly, 

may have set of next hops

• Straightforward to extend DV too
– Just remember set of neighbors

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3



Source “Trees” (3)
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Source Tree for E E’s Forwarding Table

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

Node Next hops
A B, C, D
B B, C, D
C C, D
D D
E --
F F
G F
H C, D

New for 
ECMP
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Forwarding with ECMP
• Could randomly pick a next hop for     

each packet based on destination
– Balances load, but adds jitter

• Instead, try to send packets from a given 
source/destination pair on the same path
– Source/destination pair is called a flow
– Map flow identifier to single next hop
– No jitter within flow, but less balanced



Forwarding with ECMP (2)
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A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

Multipath routes from F/E to C/H E’s Forwarding Choices

Flow Possible
next hops

Example 
choice

F à H C, D D
F à C C, D D
E à H C, D C
E à C C, D C

Use both paths to get
to one destination


