Topic

- Some bits may be received in error due to noise. How do we detect this?
 - Parity
 - Checksums
 - CRCs

- Detection will let us fix the error, for example, by retransmission (later).
Simple Error Detection – Parity Bit

- Take D data bits, add 1 check bit that is the sum of the D bits
 - Sum is modulo 2 or XOR
Parity Bit (2)

• How well does parity work?
 – What is the distance of the code?
 – How many errors will it detect/correct?

• What about larger errors?
Checksums

- Idea: sum up data in N-bit words
 - Widely used in, e.g., TCP/IP/UDP

- Stronger protection than parity

1500 bytes 16 bits
Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it’s the negative sum
- “The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ...” – RFC 791
Internet Checksum (2)

Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

0001
f203
f4f5
f6f7

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

2ddf0
ddf0
 2

ddf2
220d
Internet Checksum (3)

Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{align*}
0001 & \quad f203 \\
\downarrow & \quad f4f5 \\
+ & \quad f6f7 \\
\hline \\
2ddf0 & \quad +(0000)
\end{align*}
\]

\[
\begin{align*}
2ddf0 & \\
\downarrow & \\
ddf0 & + 2 \\
\hline \\
ddf2 & \\
\downarrow & \\
220d
\end{align*}
\]
Internet Checksum (4)

Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0
Internet Checksum (5)

Receiving:

1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0
Internet Checksum (6)

• How well does the checksum work?
 – What is the distance of the code?
 – How many errors will it detect/correct?

• What about larger errors?
Cyclic Redundancy Check (CRC)

- Even stronger protection
 - Given n data bits, generate k check bits such that the n+k bits are evenly divisible by a generator C

- Example with numbers:
 - n = 302, k = one digit, C = 3
CRCs (2)

• The catch:
 – It’s based on mathematics of finite fields, in which “numbers” represent polynomials
 – e.g, 10011010 is $x^7 + x^4 + x^3 + x^1$

• What this means:
 – We work with binary values and operate using modulo 2 arithmetic
CRCs (3)

• Send Procedure:
 1. Extend the n data bits with k zeros
 2. Divide by the generator value C
 3. Keep remainder, ignore quotient
 4. Adjust k check bits by remainder

• Receive Procedure:
 1. Divide and check for zero remainder
CRCs (4)

Data bits: \[10011 \overline{1101011111} \]
1101011111

Check bits:
\[C(x) = x^4 + x^1 + 1 \]
\[C = 10011 \]
k = 4
CRCs (5)

Transmitted frame: 110101111111

Frame with four zeros appended minus remainder

Quotient (thrown away)

Frame with four zeros appended

Remainder
CRCs (6)

• Protection depend on generator
 – Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
 – HD=4, detects up to triple bit errors
 – Also odd number of errors
 – And bursts of up to k bits in error
 – Not vulnerable to systematic errors like checksums
Error Detection in Practice

• CRCs are widely used on links
 – Ethernet, 802.11, ADSL, Cable ...

• Checksum used in Internet
 – IP, TCP, UDP ... but it is weak

• Parity
 – Is little used
Topic

• Some bits may be received in error due to noise. How do we fix them?
 – Hamming code »
 – Other codes »

• And why should we use detection when we can use correction?
Why Error Correction is Hard

• If we had reliable check bits we could use them to narrow down the position of the error
 – Then correction would be easy

• But error could be in the check bits as well as the data bits!
 – Data might even be correct
Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance of at least 3
 – Need ≥3 bit errors to change one valid codeword into another
 – Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 – Works for d errors if HD ≥ 2d + 1
Intuition (2)

- Visualization of code:

```
Valid codeword
```

```
Error codeword
```

- A
- B
Intuition (3)

- Visualization of code:

Single bit error from A

Three bit errors to get to B

Valid codeword

Error codeword
Hamming Code

• Gives a method for constructing a code with a distance of 3
 – Uses $n = 2^k - k - 1$, e.g., $n=4$, $k=3$
 – Put check bits in positions p that are powers of 2, starting with position 1
 – Check bit in position p is parity of positions with a p term in their values

• Plus an easy way to correct [soon]
Hamming Code (2)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

1 2 3 4 5 6 7
Hamming Code (3)

• Example: data=0101, 3 check bits
 – 7 bit code, check bit positions 1, 2, 4
 – Check 1 covers positions 1, 3, 5, 7
 – Check 2 covers positions 2, 3, 6, 7
 – Check 4 covers positions 4, 5, 6, 7

\[
\begin{align*}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{align*}
\]

\[p_1 = 0+1+1 = 0, \quad p_2 = 0+0+1 = 1, \quad p_4 = 1+0+1 = 0\]
Hamming Code (4)

- To decode:
 - Recompute check bits (with parity sum including the check bit)
 - Arrange as a binary number
 - Value (syndrome) tells error position
 - Value of zero means no error
 - Otherwise, flip bit to correct
Hamming Code (5)

• Example, continued

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syndrome =
Data =
Hamming Code (6)

- Example, continued

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\end{array} \]

- \(p_1 = 0 + 0 + 1 + 1 = 0 \)
- \(p_2 = 1 + 0 + 0 + 1 = 0 \)
- \(p_4 = 0 + 1 + 0 + 1 = 0 \)

Syndrome = 000, no error

Data = 0 1 0 1
Hamming Code (7)

• Example, continued

\[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \]

\[p_1 = \quad p_2 = \]
\[p_4 = \]

Syndrome =

Data =
Hamming Code (8)

- Example, continued

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}\]

\[\begin{align*}
p_1 &= 0+0+1+1 = 0, \\
p_2 &= 1+0+1+1 = 1, \\
p_4 &= 0+1+1+1 = 1 \\
\end{align*}\]

Syndrome = \[\begin{array}{c}
1 \\
1 \\
0 \\
\end{array}\], flip position 6
Data = 0 1 0 1 (correct after flip!)
Other Error Correction Codes

- Codes used in practice are much more involved than Hamming

- Convolutional codes (§3.2.3)
 - Take a stream of data and output a mix of the recent input bits
 - Makes each output bit less fragile
 - Decode using Viterbi algorithm (which can use bit confidence values)
Other Codes (2) – LDPC

- Low Density Parity Check (§3.2.3)
 - LDPC based on sparse matrices
 - Decoded iteratively using a belief propagation algorithm
 - State of the art today
- Invented by Robert Gallager in 1963 as part of his PhD thesis
 - Promptly forgotten until 1996 ...
Detection vs. Correction

• Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a bit error rate (BER) of 1 in 10000

- Which has less overhead?
 - It still depends! We need to know more about the errors
Detection vs. Correction (2)

1. Assume bit errors are random
 – Messages have 0 or maybe 1 error

 • Error correction:
 – Need ~10 check bits per message
 – Overhead:

 • Error detection:
 – Need ~1 check bits per message plus 1000 bit retransmission 1/10 of the time
 – Overhead:
Detection vs. Correction (3)

2. Assume errors come in bursts of 100
 – Only 1 or 2 messages in 1000 have errors

• Error correction:
 – Need >>100 check bits per message
 – Overhead:

• Error detection:
 – Need 32? check bits per message plus 1000 bit resend 2/1000 of the time
 – Overhead:
Detection vs. Correction (4)

• Error correction:
 – Needed when errors are expected
 – Or when no time for retransmission

• Error detection:
 – More efficient when errors are not expected
 – And when errors are large when they do occur
Error Correction in Practice

- Heavily used in physical layer
 - LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE, power-line, ...
 - Convolutional codes widely used in practice

- Error detection (w/ retransmission) is used in the link layer and above for residual errors

- Correction also used in the application layer
 - Called Forward Error Correction (FEC)
 - Normally with an erasure error model
 - E.g., Reed-Solomon (CDs, DVDs, etc.)