Network: Section 4

HTTP/2 & QUIC

Created by Qian Yan (qgiany7®)

Background & Motivation

Reducing web latency - PLT

A\

e User experience
e Scaling of web platform

—— Insecure -> Secure

A\

o TLS/TCP

“In practice, once the user has more
than 5 Mbps of bandwidth, further
improvements deliver minimal increase
in the loading speed of the average Web
application......”

- streaming HD video from the Web -> bandwidth-

bound
- loading the page hosting the HD video, with all of

its assets -> latency-bound

Source:
https://queue.acm.org/detail.cfm?id=2555617

https://queue.acm.org/detail.cfm?id=2555617

Recap: HTTP/1.X -> HTTP/2.0

Originally developed by Google

Reference:
https://queue.acm.org/detail.cfm?id=2555617
https://developers.google.com/web/fundamentals/performance/http2/

https://queue.acm.org/detail.cfm?id=2555617
https://developers.google.com/web/fundamentals/performance/http2/

HTTP/1.1) .

TCP connection #1, request #1-2: HTML + CSS

» Reuse TCP connection J
» HTTP/1.0 - one TCP per resource -> overhead

» HTTP/1.1 - up to six TCP per origin

“

» Request pipeline - e
ey
S

-

» Theoretically, yes; but failed.
» Community homebrew “optimizations”
» Multiple origins -> more parallelism
» Bundle files -> less requests
» One giant CSS file
» One giant JS file
» Code everything directly into HTML
» Leads to network congestion + poor HTTP/L.1 208 OK

Content-Type: text/html; charset=UTF-8

modularity (caching & page [oading) Server: Apache/2.2.3 (Oracle)

Cache-Control: max-age=331

» HTTP Header Date: Thu, 87 Jul 2611 22:23:13 GMT

Content-Length: 9178

» plain text - each char is 1 byte Connection: keep-alive |
» newline-delimited T ———

server processing: 40 ms

= HTTP-172 ms

crmnnamneamannes 228 MS

server processing: 20 ms

-’

m
bad
=
S
o
[a 1]
[4]
&
-4
=
=
-]
(]
[=t
rJ
=
=
[
[
(a5
)
[}
N
N
[y 3
o 1
-
<7 G

“All problems in computer
science can be solved by
another level of indirection...

--- David Wheeler

HTTP/2.0

» Another layer of abstraction over HTTP/1.1
» Multiplexing
» Prioritization

» Header compression request \

> Server push HTTP 1.1 HTTP 1.1
response
HTTP 2 HTTP 2
TCP TCP
P P
802.11 802.11

HTTP/2.0: Multiplexing, Prioritization

Connection
Stream 1
Request message
HEADERS frame (stream 1)
:method: GET
.. . :path: /index.html
» Streams inside one TCP connection version: HTP/20 —>
.scneme: ttpS
» HTTP message -> HEADER frame + DATA frame user-agent: Chrome/26.0.1410.65
Response message
» One stream for one HTTP request + response ’ ’
) o] HEADERS frame (stream 1) DATA frame (stream 1)
» Multiple streams inside one TCP connection “status: 200
. e el :version: HTTP/2.0
» streams can have different priorities | semer ngmnont . response payload...
» Frames from different streams may be interleaved and Yony: ECEpEECoting
then reassembled via the embedded stream identifier
. Stream N
in the header of each frame. —
| M—
<+«{]
\
HTTP 2.0 connection
{1 1 t 3 {1 3 t 1
S | s | | o | - [= o
tream 5 N
... G ... Y (Q
Client Server

HTTP/2.0: Server push

» Push the resource to the client instead of waiting for

the client to request it
» Request html
» Push CSS, JS, IMG...
» “PUSH_PROMISE”
» Contains HTTP request header of the pushed elements
» Server initiates a new stream and start pushing
» Client can reject by sending RST_STREAM

HTTP 2.0 connection
stream 4 stream 1 stream 4 stream 2
frame 1 framen promise promise

Sy — Sl = < E

stream 1: /page.html (client request)
stream 2: /script.js (push promise)
stream 4: /style.css (push promise)

stream 1
frame 1

HTTP/2.0: HTTP Header Compression

» HTTP headers are plain texts with a lot of repetitions (“HTTP/1.1”, “GET”, ...)
» HPACK compression algorithm: static table + dynamic table + static Huffman code

Request headers Static table Encoded headers

Dynamic table

QUIC: Quick UDP Internet

Connections
(Again) By Google

Problem with TLS/TCP

» TCP headers unencrypted
» Middleboxes - Firewall, NAT
» TCP commonly implemented in OS kernel
» Update really slow
» Sizeable user populations lag behind
» Handshake Delay
» 1 RTT for TCP + 2 RTT for TLS
» C is constant
» Head-of-line blocking delay
» One TCP stream in HTTP/2
» Packet lost? Wait...

Se

Visitor

p

ep SYN ACK
50 ms
B ACK
ClientHello
 9 ServerHello
Certificate
TLS ServerHello Done
ClientKeyExchange

100 ms ChangeCipherSpec P

Finished
ChangeCipherSpec
Finished

<

“All problems in computer
science can be solved by

another level of indirection...

Except for the problem of too
many layers of indirection.”

--- David Wheeler

QUIC
Introduction

TCP+TLS+HTTP2
Application Layer
HTTPS Performance+
E2E Encrypted

Secure

vV v v v v Y

Rapid Deployment

HTTP/2 shim

Application HTTP/2

\ J (
___________ —_—
Security TLS Quic

\ 4
"""""" ———— U
Transport TCP

port |) [UDP

___________ e e e
Network P

L

Figure 1: QUIC in the traditional HTTPS stack.

QUIC
Key Advantages

Connection establishment latency
Improved congestion control
Multiplexing without head-of-line blocking

Forward error correction

v v v v Y

Connection migration

QUIC Advantages #1

Connection Establishment Latency

» Combined handshake
» Inchoate and complete CHLO
» SHLO
» 1-RTT

» Client cache long-term Diffie-
Hellman public key

» O-RTT

Climnt Server Client Server Client Server

E

0 REJ

ECOMW. %

\ Y "M .—E\"/d“ \ .\%’%
fed R et

SHLO %
e e
=

Initial 1-RTT Handshake Successful 0-RTT Handshake Rejected 0-RTT Handshake

Figure 4: Timeline of QUIC’s initial 1-RTT handshake, a subsequent
successful 0-RTT handshake, and a failed 0-RTT handshake.

QUIC Advantages #2
Congestion Control

» Pluggable Interface Design
» Easy to switch
» Easy to experiment
» Easy to update

» ACK carries more messages

» More information

» Better use of packet number

QUIC Advantages #3
Multiplexing

» Solve Head-of-line blocking delay
» Stream - lightweight TCP connection without handshakes
» Multiple streams in one connection

» One QUIC packets can carries multiple stream frames

One QUIC Connection

Stream Frame #1 Stream Frame #2
Stream Frame #1 Stream Frame #2
QUIC Packet #1 QUIC Packet #2

(UDP Packet) (UDP Packet)

QUIC Advantages #4
Forward error correction

Skip
Describe in Sec 7.3 in paper

>

>

» Benefits not compelling

» Removed from QUIC in early 2016

QUIC Advantages #5
Connection Migration

» TCP
» Src IP:Port + Dest IP:Port + protocol - 5-tuple Identification
» Client change IP, NAT change port... -> connection break

» QUIC
» Connection ID

» Connection remains even network environment changes

QUIC Results #1

» Well tested and deployed widely
» Chrome, YouTube, Google Search App, ...

» 7% of the internet traffic

% egress over QUIC

QUIC Results #2

Mean Video Latency Mean Search Latency
(normalized) (normalized)

Mean Rebuffer Rate
(normalized)

Figure 9: Comparison of QUIC,; and TCP,, for various metrics, versus

0.8
0.6
0.4
0.2

0.2

0.8
0.6
0.4
0.2

TCP/TLS ———
QUIC ——

| 1 1 L |

100 200 300 400 500 600 700
Minimum RTT (ms)

I | 1] I I

1 1 | 1 1

100 200 300 400 500 600 700
Minimum RTT (ms)

T I 1 T T I I

TCP/TLS ——
QuIC ——

L | | | |

100 200 300 400 500 600 700
Minimum RTT (ms)

QUIC Future Work

» Alternative congestion control algorithm
» Reduce CPU cost
» Twice of the TCP
» Improve performance on mobile devices
» Mobile app -> invisible handshake, compressed content...
» CPU bottleneck
» MTU discover for QUIC
» MTU: maximum packet size

» MTU now sets to a fixed tested value: 1450 bytes

QUIC References

https://tools.ietf.org/html/draft-ietf-quic-transport-09
https://dl.acm.org/citation.cfm?id=3098842
https://www.chromium.org/quic

https://docs.google.com/document/d/1gY9-YNDNAB1eip-
RTPbgphgySWSNSDHLq9D5Bty4FSU/ edit

» https://static.googleusercontent.com/media/research.google.com/en//pubs
/archive/8b935debf13bd176a08326738f5f88ad115a071e.pdf

v v v VY

https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU/edit
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/8b935debf13bd176a08326738f5f88ad115a071e.pdf

