Link Layer
(continued)
Topics

1. Framing
 • Delimiting start/end of frames
2. Error detection and correction
 • Handling errors
3. Retransmissions
 • Handling loss
4. Multiple Access
 • 802.11, classic Ethernet
5. Switching
 • Modern Ethernet
Using Error Codes

• Codeword consists of D data plus R check bits (=systematic block code)

 Data bits Check bits
 D \(R = fn(D) \)

• Sender:
 • Compute R check bits based on the D data bits; send the codeword of D+R bits
Using Error Codes (2)

• **Receiver:**
 • Receive D+R bits with unknown errors
 • Recompute R check bits based on the D data bits; error if R doesn’t match R’

\[
R = fn(D)
\]

= ?
Internet Checksum

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[0001\]
\[f204\]
\[f4f5\]
\[f6f7\]
\[+(0000)\]
\[-------\]
\[2ddf1\]
\[\downarrow\]
\[ddf1\]
\[+2\]
\[-------\]
\[ddf3\]
\[\downarrow\]
\[220c\]
Why Error Correction is Hard

• If we had reliable check bits we could use them to narrow down the position of the error
 • Then correction would be easy

• But error could be in the check bits as well as the data bits!
 • Data might even be correct
Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance of at least 3
 • Need ≥3 bit errors to change one valid codeword into another
 • There will be a unique valid codeword that is closest to a received word with a single bit error

• If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 • Works for up to d errors if $HD \geq 2d + 1$
 • (We just assume that no more than d errors occur. We have no way to verify that.)
Intuition (2)

• Visualization of code:

![Diagram showing visualization of code with valid and error codewords labeled A and B.](image)
Intuition (3)

- Visualization of code:

 - Single bit error from A
 - Three bit errors to get to B
 - Valid codeword
 - Error codeword
Hamming Code

• Gives a method for constructing a code with a distance of, say, 3
 • Uses $n = 2^k - k - 1$, e.g., $n=4$, $k=3$
 • Put check bits in positions p that are powers of 2, starting with position 1
 • Check bit in position p is parity of positions with a p term in their values
• Plus an easy way to correct [soon]
Hamming Code (2)

• Example: data=0101, 3 check bits
 • 7 bit code, check bit positions 1, 2, 4
 • Check 1 covers positions 1, 3, 5, 7
 • Check 2 covers positions 2, 3, 6, 7
 • Check 4 covers positions 4, 5, 6, 7
Hamming Code (3)

• Example: data=0101, 3 check bits
 • 7 bit code, check bit positions 1, 2, 4
 • Check 1 covers positions 1, 3, 5, 7
 • Check 2 covers positions 2, 3, 6, 7
 • Check 4 covers positions 4, 5, 6, 7

 \[\begin{array}{cccccc}
 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \end{array} \]

 \[p_1 = 0+1+1 = 0, \quad p_2 = 0+0+1 = 1, \quad p_4 = 1+0+1 = 0 \]
Hamming Code (4)

• To decode:
 • Recompute check bits (with parity sum including the check bit)
 • Arrange as a binary number
 • Value (syndrome) tells error position
 • Value of zero means no error
 • Otherwise, flip bit to correct
Hamming Code (5)

• Example, continued

\[0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \]

\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \]

\[p_1 = \quad p_2 = \]
\[p_4 = \]

Syndrome =
Data =
Hamming Code (6)

• Example, continued

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \]

\[p_1 = 0+0+1+1 = 0, \quad p_2 = 1+0+0+1 = 0, \]
\[p_4 = 0+1+0+1 = 0 \]

Syndrome = 000, no error
Data = 0 1 0 1
Hamming Code (7)

• Example, continued

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{cccc}
p_1 = & p_2 = \\
p_4 = \\
\end{array} \]

Syndrome =
Data =
Hamming Code (8)

• Example, continued

\[
\begin{array}{cccccc}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\[p_1 = 0 + 0 + 1 + 1 = 0, \quad p_2 = 1 + 0 + 1 + 1 = 1,\]

\[p_4 = 0 + 1 + 1 + 1 = 1\]

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)