Link Layer
Scope of the Link Layer

• Concerns how to transfer messages over one or more connected links
 • Messages are frames, of limited size
 • Builds on the physical layer
In terms of layers ...

Network

Sending machine
Packet

Receiving machine
Packet

Link

Physical

Actual data path
In terms of layers (2)

Network

- Sending machine: Packet
- Receiving machine: Packet

Link

- Header
- Payload field
- Trailer

Physical

- Virtual data path
- Actual data path
Typical Implementation of Layers (2)
Topics

1. Framing
 • Delimiting start/end of frames
2. Error detection and correction
 • Handling errors
3. Retransmissions
 • Handling loss
4. Multiple Access
 • 802.11, classic Ethernet
5. Switching
 • Modern Ethernet
Framing

Delimiting start/end of frames
The Physical layer gives us a stream of bits. How do we interpret it as a sequence of frames?
Framing Methods

• We’ll look at:
 • Byte count (motivation)
 • Byte stuffing
 • Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
 • E.g., Ethernet, 802.11
Byte Count

• First try:
 • Let’s start each frame with a length field!
 • It’s simple, and hopefully good enough ...
• How well do you think it works?
Byte Count (3)

• Difficult to re-synchronize after framing error
 • Want a way to scan for a start of frame
Byte Stuffing

• Better idea:
 • Have a special flag byte value for start/end of frame
 • Replace (“stuff”) the flag with an escape code
 • Complication: have to escape the escape code too!
Byte Stuffing (2)

• Rules:
 • Replace each FLAG in data with ESC FLAG
 • Replace each ESC in data with ESC ESC
Byte Stuffing (3)

- Now any unescaped FLAG is the start/end of a frame
Bit Stuffing

• Can stuff at the bit level too
 • Call a flag six consecutive 1s
 • On transmit, after five 1s in the data, insert a 0
 • On receive, a 0 after five 1s is deleted
Bit Stuffing (2)

- Example:

Data bits: 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

Transmitted bits with stuffing
Bit Stuffing (3)

• So how does it compare with byte stuffing?

Data bits: \[0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\]

Transmitted bits with stuffing:

```plaintext
0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0
```

Stuffed bits:
Link Example: PPP over SONET

• PPP is Point-to-Point Protocol
• Widely used for link framing
 • E.g., it is used to frame IP packets that are sent over SONET optical links
Link Example: PPP over SONET (2)

• Think of SONET as a bit stream, and PPP as the framing that carries an IP packet over the link

Protocol stacks

PPP frames may be split over SONET payloads
Link Example: PPP over SONET (3)

- Framing uses byte stuffing
 - \textbf{FLAG} is 0x7E and \textbf{ESC} is 0x7D
Link Example: PPP over SONET (4)

• **Byte stuffing method:**
 • To stuff (unstuff) a byte
 • add (remove) ESC (0x7D)
 • and XOR byte with 0x20
 • Removes **FLAG** from the contents of the frame
Error detection and correction

Handling errors
Topic

• Some bits will be received in error due to noise. What can we do?
 • Detect errors with codes
 • Retransmit lost frames
 • Correct errors with codes

• Reliability is a concern that cuts across the layers
Problem – Noise may flip received bits

Signal 1 1 0 0 0 0 1
0 0 0 0

Slightly Noisy 1 1 0 0 0 0 1
0 0 0 0

Very noisy 1 1 0 0 0 0 1
0 0 0 0
Approach – Add Redundancy

• Error detection codes
 • Add check bits to the message bits to let some errors be detected

• Error correction codes
 • Add more check bits to let some errors be corrected

• Key issue is now to structure the code to detect many errors with few check bits and modest computation
Motivating Example

• A simple code to handle errors:
 • Send two copies! Error if different.

• How good is this code?
 • How many errors can it detect/correct?
 • How many errors will make it fail?
Motivating Example (2)

• We want to handle more errors with less overhead
 • Will look at better codes
 • But, they can’t handle all errors
 • And they focus on accidental (random) errors
 • Not adversaries
Using Error Codes

• **Codeword** consists of D data plus R check bits (=systematic block code)

 - Data bits
 - Check bits

 \[\begin{array}{cc}
 \text{D} & \text{R} = \text{fn}(\text{D}) \\
 \end{array} \]

• **Sender:**
 - Compute R check bits based on the D data bits; send the codeword of D+R bits
Using Error Codes (2)

• **Receiver:**
 - Receive D+R bits with unknown errors
 - Recompute R check bits based on the D data bits; error if R doesn’t match R’
Intuition for Error Codes

• For D data bits, R check bits:

 - Randomly chosen codeword is unlikely to be correct; overhead is low
Hamming Distance

• **Distance** between codewords D_1 and D_2 is the number of bit flips needed to change D_1 to D_2.

• The **Hamming distance** of a coding is the minimum distance between any pair of valid codewords (bit-strings) that cannot be detected.
Hamming Distance (2)

• **Error detection:**
 • For a coding of distance $d+1$, up to d errors will always be detected

• **Error correction:**
 • For a coding of distance $2d+1$, up to d errors can always be corrected
 • by mapping to the closest valid codeword
Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of the D bits
 • “Sum” is modulo 2 (XOR)
Parity Bit (2)

• How well does parity work?
 • What is the distance of the code?
 • How many errors will it detect/correct?

• What about larger errors?
Checksums

• Idea: sum up data in N-bit words
 • Widely used in, e.g., TCP/IP/UDP

| 1500 bytes | 16 bits |

• Stronger protection than parity
Internet Checksum

• Sum is defined in 1s complement arithmetic (must add back carries)
 • And it’s the negative sum
• “The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ...” – RFC 791
Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{array}{c}
0001 \\
\text{f204} \\
\text{f4f5} \\
\text{f6f7}
\end{array}
\]
Internet Checksum (3)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

\[
\begin{align*}
0001 \\
f204 \\
f4f5 \\
f6f7 \\
+ (0000) \\
\hline
2ddf1 \\
\downarrow
\hline
ddf1 \\
+ 2 \\
\hline
ddf3 \\
\downarrow
\hline
220c
\end{align*}
\]
Internet Checksum (4)

Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

\[
\begin{array}{c}
0001 & \text{0001} \\
\text{f204} & \text{f204} \\
f4f5 & f4f5 \\
f6f7 & f6f7 \\
+ 220c & + 220c \\
\hline
\text{ffff} & \text{ffff} \\
\text{0000} & \text{0000}
\end{array}
\]
Internet Checksum (5)

Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0
Internet Checksum (6)

• How well does the checksum work?
 • What is the distance of the code?
 • How many errors will it detect/correct?

• What about larger errors?
Cyclic Redundancy Check (CRC)

• Even stronger protection
 • Given n data bits, generate k check bits such that the n+k bits are evenly divisible by a generator C

• It’s based on mathematics of finite fields, in which “numbers” represent polynomials
 • e.g, 10011010 is \(x^7 + x^4 + x^3 + x^1 \)

• What this means:
 • We work with binary values and operate using modulo 2 arithmetic
CRCs (3)

• Send Procedure:
 1. Extend the n data bits with k zeros
 2. Divide by the generator value C
 3. Keep remainder, ignore quotient
 4. Adjust k check bits by remainder

• Receive Procedure:
 1. Divide and check for zero remainder
CRCs (4)

Data bits: 1101011111

Check bits: C(x) = x^4 + x^1 + 1
C = 10011
k = 4
CRCs (5)

Transmitted frame: 1 1 0 1 0 1 1 1 1 1 0

Frame with four zeros appended minus remainder

Quotient (thrown away)

Frame with four zeros appended

Remainder
CRCs (6)

• Protection depend on generator
 • Standard CRC-32 is 10000010 01100000 10001110 110110111

• Properties:
 • HD=4, detects up to triple bit errors
 • Also odd number of errors
 • And bursts of up to k bits in error
 • Not vulnerable to systematic errors like checksums