Network Layer (Routing)
Border Gateway Protocol
Structure of the Internet

- Networks (ISPs, CDNs, etc.) group with IP prefixes
- Networks are richly interconnected, often using IXPs
Internet-wide Routing Issues

• Two problems beyond routing within a network

1. Scaling to very large networks
 • Techniques of IP prefixes, hierarchy, prefix aggregation

2. Incorporating policy decisions
 • Letting different parties choose their routes to suit their own needs

Yikes!
Effects of Independent Parties

• Each party selects routes to suit its own interests
 • e.g., shortest path in ISP

• What path will be chosen for A2 → B1 and B1 → A2?
 • What is the best path?
Effects of Independent Parties (2)

• Selected paths are longer than overall shortest path
 • And symmetric too!
• This is a consequence of independent goals and decisions, not hierarchy
Routing Policies

• Capture the goals of different parties
 • Could be anything
 • E.g., Internet2 only carries non-commercial traffic

• Common policies we’ll look at:
 • ISPs give TRANSIT service to customers
 • ISPs give PEER service to each other
Routing Policies – Transit

• One party (customer) gets **TRANSIT** service from another party (ISP)
 • ISP accepts traffic for customer from the rest of Internet
 • ISP sends traffic from customer to the rest of Internet
 • Customer pays ISP for the privilege
Routing Policies – Peer

- Both party (ISPs in example) get PEER service from each other
 - Each ISP accepts traffic from the other ISP only for their customers
 - ISPs do not carry traffic to the rest of the Internet for each other
 - ISPs don’t pay each other
Routing with BGP (Border Gateway Protocol)

• iBGP is for internal routing
• eBGP is interdomain routing for the Internet
 • Path vector, a kind of distance vector
Routing with BGP (2)

• Parties like ISPs are called AS (Autonomous Systems)
• AS’s **MANUALLY** configure their internal BGP routes/advertisements
• External routes go through complicated filters for forwarding/filtering
• AS BGP routers communicate with each other to keep consistent routing rules
Routing with BGP (2)

• Border routers of ASes announce BGP routes
• Route announcements have IP prefix, path vector, next hop
 • Path vector is list of ASes on the way to the prefix
 • List is to find loops
• Route announcements move in the opposite direction to traffic
Routing with BGP (3)

C, AS2, AS3, R1a

C, AS2, AS3, R2a

C, AS3, R3a

C

A

B

AS1

AS2

AS3

Prefix

AS path

NextHop

Prefix

Path of packets

C, AS2, AS3, R1b

C, AS2, AS3, R2b

C, AS3, R3b

C, AS3, R3a
Routing with BGP (4)

Policy is implemented in two ways:

1. Border routers of ISP announce paths only to other parties who may use those paths
 • Filter out paths others can’t use
2. Border routers of ISP select the best path of the ones they hear in any, non-shortest way
Routing with BGP (5)

- TRANSIT: AS1 says [B, (AS1, AS3)], [C, (AS1, AS4)] to AS2
CUSTOMER (other side of TRANSIT): AS2 says [A, (AS2)] to AS1
Routing with BGP (7)

- **PEER**: AS2 says [A, (AS2)] to AS3, AS3 says [B, (AS3)] to AS2
Routing with BGP (8)

• AS2 has two routes to B (AS1, AS3) and chooses AS3 (Free!)
BGP Thoughts

• Much more beyond basics to explore!
• Policy is a substantial factor
 • Can independent decisions be sensible overall?
• Other important factors:
 • Convergence effects
 • How well it scales
 • Integration with intradomain routing
 • And more …