Network Layer
Topics

• Network service models
 • Datagrams (packets), virtual circuits

• IP (Internet Protocol)
 • Internetworking
 • Forwarding (Longest Matching Prefix)
 • Helpers: ARP and DHCP
 • Fragmentation and MTU discovery
 • Errors: ICMP (traceroute!)
 • IPv6, scaling IP to the world
 • NAT, and “middleboxes”

• Routing Algorithms
Dynamic Host Configuration Protocol (DHCP)
Bootstrapping

• Problem:
 • A node wakes up for the first time ...
 • What is its IP address? What’s the IP address of its router?
 • At least Ethernet address is on NIC
1. Manual configuration (old days)
 • Can’t be factory set, depends on use
2. DHCP: Automatically configure addresses
 • Shifts burden from users to IT folk

What’s my IP?

Use A.B.C.D

CSE 461 University of Washington
DHCP

• DHCP (Dynamic Host Configuration Protocol), from 1993, widely used
• It leases IP address to nodes
• Provides other parameters too
 • Network prefix
 • Address of local router
 • DNS server, time server, etc.
DHCP Protocol Stack

• DHCP is a client-server application
 • Uses UDP ports 67, 68

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>IP</th>
<th>UDP</th>
<th>DHCP</th>
</tr>
</thead>
</table>
DHCP Addressing

• Bootstrap issue:
 • How does node send a message to DHCP server before it is configured?

• Answer:
 • Node sends broadcast messages that delivered to all nodes on the network
 • Broadcast address is all 1s
 • IP (32 bit): 255.255.255.255
 • Ethernet (48 bit): ff:ff:ff:ff:ff:ff
DHCP Messages

Client

One link

Server
DHCP Messages (2)

Client

<table>
<thead>
<tr>
<th>DISCOVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFER</td>
</tr>
<tr>
<td>REQUEST</td>
</tr>
<tr>
<td>ACK</td>
</tr>
</tbody>
</table>

Server

| All Broadcast (255.255.255.255) |

CSE 461 University of Washington
DHCP Messages (3)

• To renew an existing lease, an abbreviated sequence is used:
 • REQUEST, followed by ACK

• Protocol also supports replicated servers for reliability
Address Resolution Protocol (ARP)
Sending an IP Packet

Problem:

• A node needs Link layer addresses to send a frame over the local link
• How does it get the destination link address from a destination IP address?

Uh oh ...

My IP is 1.2.3.4
ARP (Address Resolution Protocol)

• Node uses to map a local IP address to its Link layer addresses
ARP Protocol Stack

• ARP sits right on top of link layer
 • No servers, just asks node with target IP to identify itself
 • Uses broadcast to reach all nodes
ARP Messages

Node — One link — Target
ARP Messages (2)

Node

REQUEST
Who has IP 1.2.3.4?

REPLY
I do at 1:2:3:4:5:6

Target

Broadcast

[root@host ~]# tcpdump -lni any arp &
(sleep 1; arp -d 10.0.0.254; ping -c1 -n 10.0.0.254)

listening on any, link-type LINUX_SLL
(Linux cooked), capture size 96 bytes

17:58:02.155495 arp who-has 10.2.1.224 tell 10.2.1.253

17:58:02.317444 arp who-has 10.0.0.96 tell 10.2.1.253

17:58:02.370446 arp who-has 10.3.1.12 tell 10.3.1.61
ARP Table

arp -an | grep 10

? (10.241.1.114) at 00:25:90:3e:dc:fc [ether] on vlan241
? (10.252.1.8) at 00:c0:b7:76:ac:19 [ether] on vlan244
? (10.252.1.9) at 00:c0:b7:76:ae:56 [ether] on vlan244
? (10.252.1.6) at 00:c0:b7:74:fb:9a [ether] on vlan244
? (10.241.1.121) at 00:25:90:2c:d4:f7 [ether] on vlan241
[...]
Discovery Protocols

• Help nodes find each other
 • There are more of them!
 • E.g., eroconf, Bonjour

• Often involve broadcast
 • Since nodes aren’t introduced
 • Very handy glue
Fragmentation
Problem: How do we connect networks with different maximum packet sizes?
• Need to split up packets, or discover the largest size to use
Packet Size Problem

• Different networks have different max packet sizes
 • Or MTU (Maximum Transmission Unit)
 • E.g., Ethernet 1.5K, WiFi 2.3K

• Prefer large packets for efficiency
 • But what size is too large?
 • Difficult as node doesn’t know complete network path
Packet Size Solutions

• Fragmentation (now)
 • Split up large packets if they are too big to send
 • Classic method, dated

• Discovery (next)
 • Find the largest packet that fits on the network path
 • IP uses today instead of fragmentation
IPv4 Fragmentation

• Routers fragment packets too large to forward
• Receiving host reassembles to reduce load on routers

Fits on first link
IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

![IPv4 Fragmentation Fields Diagram](image-url)
IPv4 Fragmentation Procedure

• Routers split a packet that is too large:
 • Typically break into large pieces
 • Copy IP header to pieces
 • Adjust length on pieces
 • Set offset to indicate position
 • Set MF (More Fragments) on all pieces except last

• Receiving hosts reassembles the pieces:
 • Identification field links pieces together, MF tells receiver when complete
IPv4 Fragmentation (2)

Before
MTU = 2300
ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

After
MTU = 1500
ID =
Data Len =
Offset =
MF =

(Ignore length of headers)
IPv4 Fragmentation (3)

Before
MTU = 2300

ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

After
MTU = 1500

ID = 0x12ef
Data Len = 1500
Offset = 0
MF = 0

ID = 0x12ef
Data Len = 800
Offset = 1500
MF = 0
IPv4 Fragmentation (4)

• It works!
 • Allows repeated fragmentation

• But fragmentation is undesirable
 • More work for routers, hosts
 • Tends to magnify loss rate
 • Security vulnerabilities too
Path MTU Discovery

• Discover the MTU that will fit
 • So we can avoid fragmentation
 • The method in use today

• Host tests path with large packet
 • Routers provide feedback if too large; they tell host what size would have fit
Path MTU Discovery (2)
Path MTU Discovery (3)
Path MTU Discovery (4)

- Process may seem involved
 - But usually quick to find right size
 - MTUs smaller on edges of network
- Path MTU depends on the path and can change
 - Search is ongoing
- Implemented with ICMP (next)
 - Set DF (Don’t Fragment) bit in IP header to get feedback
Internet Control Message Protocol (ICMP)
• Problem: What happens when something goes wrong during forwarding?
 • Need to be able to find the problem
Internet Control Message Protocol

• ICMP is a companion protocol to IP
 • They are implemented together
 • Sits on top of IP (IP Protocol=1)

• Provides error report and testing
 • Error is at router while forwarding
 • Also testing that hosts can use
ICMP Errors

- When router encounters an error while forwarding:
 - It sends an ICMP error report back to the IP source
 - It discards the problematic packet; host needs to rectify
ICMP Message Format (2)

- Each ICMP message has a Type, Code, and Checksum.
- Often carry the start of the offending packet as payload.
- Each message is carried in an IP packet.

Portion of offending packet, starting with its IP header

<table>
<thead>
<tr>
<th>Src=router, Dst=A</th>
<th>Type=X, Code=Y</th>
<th>Src=A, Dst=B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol = 1</td>
<td>ICMP data</td>
<td>XXXXXXXXXXXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP header</th>
<th>ICMP header</th>
<th>ICMP data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src=router, Dst=A</td>
<td>Type=X, Code=Y</td>
<td>Src=A, Dst=B</td>
</tr>
<tr>
<td>Protocol = 1</td>
<td>ICMP data</td>
<td>XXXXXXXXXXXX</td>
</tr>
</tbody>
</table>
Example ICMP Messages

<table>
<thead>
<tr>
<th>Name</th>
<th>Type / Code</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest. Unreachable (Net or Host)</td>
<td>3 / 0 or 1</td>
<td>Lack of connectivity</td>
</tr>
<tr>
<td>Dest. Unreachable (Fragment)</td>
<td>3 / 4</td>
<td>Path MTU Discovery</td>
</tr>
<tr>
<td>Time Exceeded (Transit)</td>
<td>11 / 0</td>
<td>Traceroute</td>
</tr>
<tr>
<td>Echo Request or Reply</td>
<td>8 or 0 / 0</td>
<td>Ping</td>
</tr>
</tbody>
</table>

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply
Traceroute

• IP header contains TTL (Time to live) field
 • Decremented every router hop, with ICMP error at zero
 • Protects against forwarding loops
Traceroute (2)

- Traceroute repurposes TTL and ICMP functionality
 - Sends probe packets increasing TTL starting from 1
 - ICMP errors identify routers on the path