
2- Application Level Protocols
HTTP 0.9/1.0/1.1/2

Part B



FROM  LAST TIME



Review:  Reducing Page Load Time

• Issue: A typical page is made up of many elements
– Many elements may come from the same web server

• HTTP 0.9 required establishing a TCP connection per 
HTTP transfer
– slow => do more than one HTTP transfer at a time

• HTTP 1.0 provides real headers but keeps TCP 
connection for framing HTTP requests

• HTTP 1.1 allows multiple HTTP requests to be sent 
sequentially over a single TCP connection



Can We Further Reduce PLT?
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Persistent Connections: Pipelining

• We would like to pipeline HTTP requests over a single 
TCP connection
– Why isn’t that done in HTTP 1.1?

• 19 years go by and Google wants better PLT
– HTML/2!

• We get request pipelining and more



HTTP/2: RETHINKING EVERYTHING



HTTP/2 (2015)
• HTTP/2 evolved from Google SPDY, which started around2012

– Standardization committee created HTTP/2
– IETF RFC 7540, May 2015

• HTTP/2 preserves the semantics of HTTP 1.0 / 1.1
– Client still says GET and server still responds OK

• However, the requests are
– encoded differently (compressed)
– transferred differently (streams and frames)



Issues

• We want pipelining!
– HTTP/2 has pipelining

• HTTP header is encoded as text
• Headers have gotten very large

– HTTP/2 compresses HTTP/1.1 headers

• Some elements on page are more important than 
others
– HTTP/2 allows client to communicate “weights” with 

requests



Issues

• Pipelining allows out of order replies by server
– Server can apply it’s own weights to requests

• (Neither client nor server has a complete view of how important 
something might be, or what it will cost to serve it)

• Client learns about embedded objects when it 
receives the page, but server knows about them 
already
– “Server push” – here’s the response to a request you 

haven’t yet made



How It Fits Together
• Existing browser and web server software works with 

HTTP 1.1 headers
• Don’t want to rewrite/upgrade all that code

– need to continue to speak HTTP/1.1 in any case
• Want to encode requests/response very differently, 

though

• Solution:   Architect HTTP 2.0 so that:
– it’s a transport for HTTP 1.1 messages
– Using it could be implemented simply by writing a layer that 

packages an 1.1 message into HTTP 2.0 message
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This is the idea of how HTTP 2 fits in.  A particular implementation
might well combine HTTP 1.1 and HTTP 2



HTTP 2 – Main Features
• Allows “real pipelining” of requests on persistent connections

– We have to “name” each request explicitly so that we can match responses to 
requests

• Why can’t we use ordering of requests to match to responses?

• Compresses headers
– Headers have gotten big

• Cookies

• Servers can supply data that wasn’t requested
– Called server push
– “Here’s an image file needed by the HTML page you just fetched”

• Clients can advertise priorities among their requests

• “Real pipelining” allows servers to apply their own priorities, since they 
don’t have to reply in order



HTTP 2 – Streams and Frames

• An HTTP/2 connection is a TCP connection between 
client and server
– long lived, just like HTTP 1.1

• An HTTP/2 stream is an ordered, bidirectional flow of 
information between client and server

• There is one connection between a client and server
• There is (roughly) one stream per HTTP request
• Multiple streams are being carried on the TCP 

connection at once



HTTP 2 – Streams & Frames



Streams
• Each stream has a unique ID

– Successive stream IDs from one peer must be increasing
– When run out of stream IDs, have to create a new connection

• A stream is created by sending a frame with a new stream ID

• Race condition if both ends try to create stream IDs
– Client: “I choose 13” and Server: “I choose 13”

• Solution: statically partition possible names among possible name 
creators
– in this case, “client” uses odd numbers, server uses evens

• In general, what other solutions are there for choosing unique IDs?



Frames
• An HTTP request is sent as a sequence of frames on a 

single stream
– The response is sent as frames of the same stream in the 

opposite direction

• There are many streams using the TCP connection 
simultaneously
– Many requests being conveyed in parallel
– There is no particular ordering guarantees about delivery of 

frames in different streams

• An individual stream delivers its frames in order
– Because TCP does



HTTP 2 – Streams & Frames



Viewed at the TCP level

Do frames need sequence numbers?



Frame Header

• Length: length of payload
– header is always 9 bytes

• Type: frame type
• Flags: depends on type
• R: reserved;  “must be unset when sending and ignored when receiving”
• Stream ID:  0x0 is reserved for frames associated with the connection 

(not an individual stream)



Frame Types



Simple encoding of an HTTP request

• Send a HEADER frame followed by zero or more 
CONTINUATION frames
– Set END_HEADERS flag on last one

• Send DATA frames for request data, if needed
– Set END_STREAM flag on last

• Response is the same, in reverse



HEADER frame

• Padding is for security – obfuscate lengths
• Stream dependency – make this stream a child of named stream

• If server can’t make progress on parent, assign resources proportional 
to weights to children

• Header block fragment – take the HTTP 1.1 header and compress it, then 
send it in chunks (if necessary)

• Frame header flags: END_HEADERS and END_STREAM



DATA Frame



PRIORITY Frame

• E: exclusive bit – inserts this stream as only child of parent stream, moving 
existing children to be children of this stream



RST_STREAM Frame

• Ends a stream
– Why is this useful?

• Also have END_STREAM flag bit...



GOAWAY Frame

• Closes connection
• Provides largest id of any stream that the server may 

have acted on
– Why?



PUSH_PROMISE Frame

• Allows server to send something not yet asked for
– E.g., a style sheet or a javascript program or an embedded 

image
• Acts like a HEADERS frame

– Can have CONTINUATIONs following for more header



PING Frame

• Is other end still there?
– Responds with PING with ACK flag bit set

• Measure latency to other end
– PING frames have highest priority...



WINDOW_UPDATE Frame

• TCP does flow control on entire connection
– but need flow control on a per stream basis as well



Getting There From Here

• HTTP 2 is intended as an optimized transport of HTTP 
requests
– Needs to be backward compatible with HTTP 1/1.1

• Main problem:
– How to tell if client and server can both speak HTTP 2?

• Client could try HTTP 2 and then revert to 1.1
• Client could start with HTTP 1.1 then upgrade to 2



Dynamically Upgrading to HTTP 2

• Client:

GET / HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: <base64url encoding of HTTP/2 
SETTINGS payload>



Server Refuses Upgrade

• Server may simply not recognize the upgrade request 
if it isn’t HTTP 2 capable

HTTP/1.1 200 OK
Content-Length: 243
Content-Type: text/html

...



Server Wants to Upgrade

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

[ HTTP/2 connection ...



HTTP 2 Wrap-up



WWW PERFORMANCE: CACHING 
AND CDN’S



Web Caching

• Users often revisit web pages
– Big win from reusing local copy!
– This is caching

• Key question:
– When is it OK to reuse local copy?
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Web Caching (2)

• Locally determine copy is still valid
– Based on expiry information such as “Expires” 

header from server
– Or use a heuristic to guess (cacheable, freshly 

valid, not modified recently) 
– Content is then available right away
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Web Caching (3)

• Revalidate copy with remote server
– Based on timestamp of copy such as “Last-Modified” 

header from server
– Or based on content of copy such as “Etag” server header
– Content is available after 1 RTT
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Web Caching (4)

• Putting the pieces together:
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Web Proxies

• Place intermediary between pool of clients and 
external web servers
– Benefits for clients include caching and security checking
– Organizational access policies too!

• Proxy caching
– Clients benefit from larger, shared cache
– Benefits limited by secure / dynamic content, as well as 

“long tail” of page popularity distribution
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Web Proxies

• Clients contact proxy; proxy contacts server
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Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and grew. 
This:

1. Concentrated load on popular servers
2. Led to congested networks and need to provision more 

bandwidth
3. Gave a poor user experience

• Idea:
– Place popular content near clients
– Helps with all three issues above
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Before CDNs

• Sending content from the source to 4 users 
takes 4 x 3 = 12 “network hops” in the 
example
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After CDNs

• Sending content via replicas takes only 4 + 2 = 
6 “network hops”
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After CDNs

• Benefits assuming popular content:
– Reduces server, network load
– Improves user experience (PLT)
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How to place content near clients? 

• Use browser and proxy caches
– Helps, but limited to one client or clients in one 

organization

• Want to place replicas across the Internet for 
use by all nearby clients
– Done by clever use of DNS
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Content Delivery Network
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Content Delivery Network (2)

• DNS gives different answers to clients
– Tell each client the nearest replica (map client IP)
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Limits: Popularity of Content
• Zipf’s Law: few popular items, many 

unpopular ones; both matter

Zipf popularity
(kth item is ~1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)
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