
2- Application Level Protocols
HTTP 0.9/1.0/1.1/2

Part B

FROM LAST TIME

Review: Reducing Page Load Time

• Issue: A typical page is made up of many elements
– Many elements may come from the same web server

• HTTP 0.9 required establishing a TCP connection per
HTTP transfer
– slow => do more than one HTTP transfer at a time

• HTTP 1.0 provides real headers but keeps TCP
connection for framing HTTP requests

• HTTP 1.1 allows multiple HTTP requests to be sent
sequentially over a single TCP connection

Can We Further Reduce PLT?

CSE 461 University of Washington 4

One request per
connection

Sequential
requests per
connection

Pipelined
requests per
connection

Persistent Connections: Pipelining

• We would like to pipeline HTTP requests over a single
TCP connection
– Why isn’t that done in HTTP 1.1?

• 19 years go by and Google wants better PLT
– HTML/2!

• We get request pipelining and more

HTTP/2: RETHINKING EVERYTHING

HTTP/2 (2015)
• HTTP/2 evolved from Google SPDY, which started around2012

– Standardization committee created HTTP/2
– IETF RFC 7540, May 2015

• HTTP/2 preserves the semantics of HTTP 1.0 / 1.1
– Client still says GET and server still responds OK

• However, the requests are
– encoded differently (compressed)
– transferred differently (streams and frames)

Issues

• We want pipelining!
– HTTP/2 has pipelining

• HTTP header is encoded as text
• Headers have gotten very large

– HTTP/2 compresses HTTP/1.1 headers

• Some elements on page are more important than
others
– HTTP/2 allows client to communicate “weights” with

requests

Issues

• Pipelining allows out of order replies by server
– Server can apply it’s own weights to requests

• (Neither client nor server has a complete view of how important
something might be, or what it will cost to serve it)

• Client learns about embedded objects when it
receives the page, but server knows about them
already
– “Server push” – here’s the response to a request you

haven’t yet made

How It Fits Together
• Existing browser and web server software works with

HTTP 1.1 headers
• Don’t want to rewrite/upgrade all that code

– need to continue to speak HTTP/1.1 in any case
• Want to encode requests/response very differently,

though

• Solution: Architect HTTP 2.0 so that:
– it’s a transport for HTTP 1.1 messages
– Using it could be implemented simply by writing a layer that

packages an 1.1 message into HTTP 2.0 message

HTTP 2

TCP

IP

802.11

browser

HTTP 1.1

TCP

IP

802.11

server

HTTP 1.1
request

response
HTTP 2 HTTP 2

This is the idea of how HTTP 2 fits in. A particular implementation
might well combine HTTP 1.1 and HTTP 2

HTTP 2 – Main Features
• Allows “real pipelining” of requests on persistent connections

– We have to “name” each request explicitly so that we can match responses to
requests

• Why can’t we use ordering of requests to match to responses?

• Compresses headers
– Headers have gotten big

• Cookies

• Servers can supply data that wasn’t requested
– Called server push
– “Here’s an image file needed by the HTML page you just fetched”

• Clients can advertise priorities among their requests

• “Real pipelining” allows servers to apply their own priorities, since they
don’t have to reply in order

HTTP 2 – Streams and Frames

• An HTTP/2 connection is a TCP connection between
client and server
– long lived, just like HTTP 1.1

• An HTTP/2 stream is an ordered, bidirectional flow of
information between client and server

• There is one connection between a client and server
• There is (roughly) one stream per HTTP request
• Multiple streams are being carried on the TCP

connection at once

HTTP 2 – Streams & Frames

Streams
• Each stream has a unique ID

– Successive stream IDs from one peer must be increasing
– When run out of stream IDs, have to create a new connection

• A stream is created by sending a frame with a new stream ID

• Race condition if both ends try to create stream IDs
– Client: “I choose 13” and Server: “I choose 13”

• Solution: statically partition possible names among possible name
creators
– in this case, “client” uses odd numbers, server uses evens

• In general, what other solutions are there for choosing unique IDs?

Frames
• An HTTP request is sent as a sequence of frames on a

single stream
– The response is sent as frames of the same stream in the

opposite direction

• There are many streams using the TCP connection
simultaneously
– Many requests being conveyed in parallel
– There is no particular ordering guarantees about delivery of

frames in different streams

• An individual stream delivers its frames in order
– Because TCP does

HTTP 2 – Streams & Frames

Viewed at the TCP level

Do frames need sequence numbers?

Frame Header

• Length: length of payload
– header is always 9 bytes

• Type: frame type
• Flags: depends on type
• R: reserved; “must be unset when sending and ignored when receiving”
• Stream ID: 0x0 is reserved for frames associated with the connection

(not an individual stream)

Frame Types

Simple encoding of an HTTP request

• Send a HEADER frame followed by zero or more
CONTINUATION frames
– Set END_HEADERS flag on last one

• Send DATA frames for request data, if needed
– Set END_STREAM flag on last

• Response is the same, in reverse

HEADER frame

• Padding is for security – obfuscate lengths
• Stream dependency – make this stream a child of named stream

• If server can’t make progress on parent, assign resources proportional
to weights to children

• Header block fragment – take the HTTP 1.1 header and compress it, then
send it in chunks (if necessary)

• Frame header flags: END_HEADERS and END_STREAM

DATA Frame

PRIORITY Frame

• E: exclusive bit – inserts this stream as only child of parent stream, moving
existing children to be children of this stream

RST_STREAM Frame

• Ends a stream
– Why is this useful?

• Also have END_STREAM flag bit...

GOAWAY Frame

• Closes connection
• Provides largest id of any stream that the server may

have acted on
– Why?

PUSH_PROMISE Frame

• Allows server to send something not yet asked for
– E.g., a style sheet or a javascript program or an embedded

image
• Acts like a HEADERS frame

– Can have CONTINUATIONs following for more header

PING Frame

• Is other end still there?
– Responds with PING with ACK flag bit set

• Measure latency to other end
– PING frames have highest priority...

WINDOW_UPDATE Frame

• TCP does flow control on entire connection
– but need flow control on a per stream basis as well

Getting There From Here

• HTTP 2 is intended as an optimized transport of HTTP
requests
– Needs to be backward compatible with HTTP 1/1.1

• Main problem:
– How to tell if client and server can both speak HTTP 2?

• Client could try HTTP 2 and then revert to 1.1
• Client could start with HTTP 1.1 then upgrade to 2

Dynamically Upgrading to HTTP 2

• Client:

GET / HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: <base64url encoding of HTTP/2
SETTINGS payload>

Server Refuses Upgrade

• Server may simply not recognize the upgrade request
if it isn’t HTTP 2 capable

HTTP/1.1 200 OK
Content-Length: 243
Content-Type: text/html

...

Server Wants to Upgrade

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

[HTTP/2 connection ...

HTTP 2 Wrap-up

WWW PERFORMANCE: CACHING
AND CDN’S

Web Caching

• Users often revisit web pages
– Big win from reusing local copy!
– This is caching

• Key question:
– When is it OK to reuse local copy?

CSE 461 University of Washington 36

NetworkCache

Local copies

Server

Web Caching (2)

• Locally determine copy is still valid
– Based on expiry information such as “Expires”

header from server
– Or use a heuristic to guess (cacheable, freshly

valid, not modified recently)
– Content is then available right away

CSE 461 University of Washington 37

NetworkCache
Server

Web Caching (3)

• Revalidate copy with remote server
– Based on timestamp of copy such as “Last-Modified”

header from server
– Or based on content of copy such as “Etag” server header
– Content is available after 1 RTT

CSE 461 University of Washington 38

NetworkCache
Server

Web Caching (4)

• Putting the pieces together:

CSE 461 University of Washington 39

Web Proxies

• Place intermediary between pool of clients and
external web servers
– Benefits for clients include caching and security checking
– Organizational access policies too!

• Proxy caching
– Clients benefit from larger, shared cache
– Benefits limited by secure / dynamic content, as well as

“long tail” of page popularity distribution

CSE 461 University of Washington 40

Web Proxies

• Clients contact proxy; proxy contacts server

CSE 461 University of Washington 41

Cache

Near client
Far from client

Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and grew.
This:

1. Concentrated load on popular servers
2. Led to congested networks and need to provision more

bandwidth
3. Gave a poor user experience

• Idea:
– Place popular content near clients
– Helps with all three issues above

CSE 461 University of Washington 42

Before CDNs

• Sending content from the source to 4 users
takes 4 x 3 = 12 “network hops” in the
example

CSE 461 University of Washington 43

Server

User

User

. . .

After CDNs

• Sending content via replicas takes only 4 + 2 =
6 “network hops”

CSE 461 University of Washington 44

Server

User

User

. . .
Replica

After CDNs

• Benefits assuming popular content:
– Reduces server, network load
– Improves user experience (PLT)

CSE 461 University of Washington 45

Source

User

User

. . .
Replica

How to place content near clients?

• Use browser and proxy caches
– Helps, but limited to one client or clients in one

organization

• Want to place replicas across the Internet for
use by all nearby clients
– Done by clever use of DNS

CSE 461 University of Washington 46

Content Delivery Network

CSE 461 University of Washington 47

Content Delivery Network (2)

• DNS gives different answers to clients
– Tell each client the nearest replica (map client IP)

CSE 461 University of Washington 48

CSE 461 University of Washington 49

Limits: Popularity of Content
• Zipf’s Law: few popular items, many

unpopular ones; both matter

Zipf popularity
(kth item is ~1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)

	2- Application Level Protocols�HTTP 0.9/1.0/1.1/2
	From Last Time
	Review: Reducing Page Load Time
	Can We Further Reduce PLT?
	Persistent Connections: Pipelining
	HTTP/2: Rethinking everything
	HTTP/2 (2015)
	Issues
	Issues
	How It Fits Together
	HTTP 2
	HTTP 2 – Main Features
	HTTP 2 – Streams and Frames
	HTTP 2 – Streams & Frames
	Streams
	Frames
	HTTP 2 – Streams & Frames
	Viewed at the TCP level
	Frame Header
	Frame Types
	Simple encoding of an HTTP request
	HEADER frame
	DATA Frame
	PRIORITY Frame
	RST_STREAM Frame
	GOAWAY Frame
	PUSH_PROMISE Frame
	PING Frame
	WINDOW_UPDATE Frame
	Getting There From Here
	Dynamically Upgrading to HTTP 2
	Server Refuses Upgrade
	Server Wants to Upgrade
	HTTP 2 Wrap-up
	WWW Performance: Caching AND cdn’s
	Web Caching
	Web Caching (2)
	Web Caching (3)
	Web Caching (4)
	Web Proxies
	Web Proxies
	Content Delivery Networks
	Before CDNs
	After CDNs
	After CDNs
	How to place content near clients?
	Content Delivery Network
	Content Delivery Network (2)
	Limits: Popularity of Content

